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ABSTRACT 

Robust optimization considers uncertainty in inputs to address the shortcomings of mean-variance 

optimization. We investigate the mechanisms by which robust optimization achieves its goal and 

give practical guidance regarding its parametrization. We show that quadratic uncertainty sets are 

preferred to box uncertainty sets, that a diagonal uncertainty matrix with only variances should be 

used, and that the level of uncertainty can be chosen based on Sharpe ratios. We use examples with 

the proposed parametrization to show that robust optimization efficiently overcomes the 

weaknesses of mean-variance optimisation and can be applied in real investment problems like 

multi-asset portfolio management or robo-advising.  
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I. Introduction 
 

The influential work of Markowitz (1952, 1959) laid the groundwork for the modern portfolio 

construction theory. However, the practical application of this framework in the asset management 

industry has been disappointing. In fact, the inputs (expected returns and covariance matrix) for 

Mean-Variance Optimization (MVO) needs to be estimated, either statistically from historical data 

or with a factor or valuation model. Chopra and Ziemba (1993) and KallBerg and Ziemba (1984) 

find that the uncertainty in expected returns are roughly ten times as important as that in the 

covariance matrix. Yam et al. (2016) consider the uncertainty effect by investigating different 

robust formulations and find that the uncertainty on the expected returns is more significant than 

the uncertainty on the covariance matrix for the sensitivity of the solution. Therefore, in this paper, 

we focus on the uncertainty in expected returns while assuming that the covariance of returns is 

known. 

The main problem of MVO is that it not only fails to take into account the uncertainty in the 

estimation process of expected returns but also tends to amplify them. This issue is analytically 

reported and empirically tested by Best and Grauer (1991), Chopra and Ziemba (1993) and Jobson 

and Korkie (1983).  In general, the correlation coefficients of asset returns are non-zero, so 

correlation matrix is different from identity matrix. The covariance matrix, resulting from a 

correlation matrix different from an identity matrix, contains small eigenvalues. The inverse of a 

matrix plagued by small eigenvalues, in the solution to MVO, accentuates the impact of 

uncertainty in expected returns on the final result (Roncalli 2013 and Bruder et al. 2013), leads to 

error-maximized and financially irrelevant investment portfolios (Michaud 1989) and increases 

the sensitivity of the MVO optimal portfolios to small changes in inputs (Black and Litterman 

1990). Typically, if two assets are highly correlated, a tiny difference in expected returns may lead 

to a large long-short position in the MVO portfolio (Best and Grauer 1991). He and Litterman 

(1999) point out that many investment managers find MVO portfolio weights extreme and counter-

intuitive. 

In portfolio optimization literature, two approaches have been proposed to mitigate the previously 

mentioned drawbacks suffered by MVO. The first approach, embodied by the Black-Litterman 

model or more broadly by Bayesian shrinkage approaches, proposes making robust the estimation 

of expected returns before feeding them into MVO. The second one, exemplified by robust 

optimization (RO), takes into account the uncertainty in the optimization objective function and 

provides another promising alternative to MVO. In this paper, we provide a practical guide to 

implementing RO in the multi-asset investment universe. 

As opposed to the MVO which treats its estimated expected returns in a deterministic manner, RO, 

introduced by El Ghaoui and Lebret (1997) and Ben-Tal and Nemirovski (1998), assumes that the 

estimated expected returns are random variables and seeks to find the optimal portfolio even when 

the realized values of inputs deviate from the estimated ones within some given set. The latter is 
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called uncertainty set and defines the degree of deviation one wishes to be protected from. In RO 

literature applied to portfolio construction, two forms of uncertainty set have been studied (Fabozzi 

et al. 2007). Goldfarb and Iyengar (2003) analyze the quadratic uncertainty set for expected 

returns(𝝁 −  �̂�)𝑇𝛀𝝁
−1(𝝁 −  �̂�) ≤  𝜅2 , with 𝝁  the 𝑛 × 1  expected returns vector, 𝑇  transpose, �̂� 

estimated expected returns vector, 𝛀𝝁 the uncertainty matrix and 𝜅 the level of uncertainty. They 

find that the RO constructed with such an uncertainty set can be solved as a second-order cone 

program. Tütüncü and König (2004) obtain similar results with box uncertainty set |𝜇𝑖 − �̂�𝑖| ≤

 𝜉𝑖, 𝑖 = 1,2, … , 𝑛, with 𝜇𝑖 the expected return of asset 𝑖, �̂�𝑖 the estimated expected return of asset 𝑖 

and 𝜉𝑖 the level of uncertainty for the expected return estimation of asset 𝑖. As shown above, one 

needs to specify two additional parameters, namely the uncertainty matrix 𝛀𝝁 and the level of 

uncertainty 𝜅, in a quadratic uncertainty set. As for box uncertainty set, one has to determine the 

level of uncertainty 𝜉𝑖 for each asset 𝑖. 

A great deal has been written about the uncertainty matrix 𝛀𝝁 in RO literature. Ceria and Stubbs 

(2006) argue that it is important to distinguish the covariance matrix of asset returns from the 

uncertainty matrix of the estimation error without providing further guidance on how to choose 

the uncertainty matrix. Scherer (2006) analyzes the uncertainty matrix proportional to the 

covariance matrix of asset returns. He demonstrates that the robust optimal portfolio can be 

expressed as a weighted average of the MVO portfolio and the minimum-variance portfolio and 

argues that RO provides no additional benefit compared with Bayesian shrinkage approaches. 

Fabozzi et al. (2007) and Stubbs and Vance (2005) argue that the uncertainty matrix should use 

sample variance as the estimation error; therefore, they suggest using the diagonal of the sample 

covariance matrix as the uncertainty matrix. Heckel et al. (2016) find the limiting portfolios of RO, 

formulated with different uncertainty matrices, for the highest and lowest uncertainty levels. 

However, these papers fail to evaluate the pros and cons of each uncertainty matrix, and they do 

not provide clear guidelines for the choice of the uncertainty matrix in the quadratic uncertainty 

set.  

As regards to the level of uncertainty parameter 𝜅, very little has been published. Cornuéjols et al. 

(2018) briefly discuss the fact that 𝜅 is related to the size of the uncertainty set and needs to be 

chosen based on the desired level of robustness. Most authors analyze 𝜅 from a purely probabilistic 

point of view, neglecting the fact that 𝜅 is also a parameter in an optimization problem. From a 

probabilistic point of view, 𝜅 represents the size of an uncertainty set, so it corresponds to the 

quantile yielded by the inverse cumulative distribution function. For practical purposes, 𝜅 should 

be determined to provide a wide enough safety margin for investors and its determination depends 

on the assumptions of the distribution of asset returns. Most RO empirical applications consists of 

simply varying 𝜅 from one extremum to another. For instance, Goldfarb and Iyengar (2003) carry 

out experiments on real data by varying 𝜅 from the first to the 99th percentile. They conclude that 

the estimation uncertainty is unknown a priori. Therefore, the correct choice of 𝜅 remains a vexing 

problem and they also suggest that 𝜅 should be adjusted dynamically. Scherer (2006) and Ceria 
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and Stubbs (2006) assume that the returns follow an elliptical distribution and that 𝜅 is derived as 

the inverse cumulative distribution function of the chi-squared distribution. Ceria and Stubbs (2006) 

and Santos (2010) run an out-of-sample performance comparison between RO and MVO and find 

that RO outperforms MVO. However, they provide no justification for performing the simulations 

with 𝜅 equal to 1, 3, 5 and 7.  

The goal of this paper is to take RO from theory to application, by first arguing the preference of 

quadratic uncertainty set over box uncertainty set and by providing guidance in calibrating the two 

important elements of a quadratic uncertainty set: the uncertainty matrix as well as the level of 

uncertainty. It is important to note that the final objective of RO is to improve the MVO by 

reducing the sensitivity to inputs and by avoiding creating large arbitrage positions for highly 

correlated assets. From this perspective, the determination of the uncertainty set should be studied 

in the context of the optimization. Most research work in RO literature analyzes the uncertainty 

set as the confidence region of the estimated inputs. In this paper, we seek to enhance this purely 

probabilistic approach by treating the uncertainty set as an integrated part of the optimization, in 

the sense that it should satisfy the optimality condition of RO. Following this approach, we propose 

the optimal choices regarding the form of uncertainty set and the uncertainty matrix. Leveraging 

the fact that 𝜅 is also a parameter in the optimization function, we derive its upper bound limit and 

propose a rule of thumb for its calibration in terms of Sharpe ratios.  

The paper is organized as follows: Section II.A studies two major forms of uncertainty set and 

demonstrate the superiority of quadratic uncertainty set over box uncertainty set by deriving and 

comparing the objective function of RO using both forms. We identify, in Section II.A, the origins 

of drawbacks of MVO by expressing its optimality condition in terms of risk budgets, Sharpe ratios 

and correlation matrix. We explain how RO, with the right parameters, can mitigate these 

drawbacks based on its optimality condition. Section II.B analyzes four uncertainty matrices to 

construct the quadratic uncertainty sets and advocates the use of a diagonal matrix of sample 

variances based on two criteria: reduction of sensitivity and keeping the original volatilities 

unchanged. Section II.C derives useful insights from the 𝜅 calibration using both analytical and 

empirical techniques for multi-asset portfolios. In particular, the upper bound limit of 𝜅 is obtained 

using the optimality condition of RO. Moreover, we propose a rule of thumb to calibrate 𝜅 based 

on the Sharpe ratios using simulations from returns of major asset classes. Finally, in section III, 

we provide two asset allocation examples to argue that RO reduces the sensitivity to inputs of the 

portfolio construction process, and leads to more intuitive and more diversified portfolios 

compared to MVO. Section III.A constructs an example from real historical data and aims to show 

that RO optimal portfolios are more diversified in risk and with less extreme long-short positions 

compared to the MVO. Section III.B details another example based on a simple case where assets 

have the same expected return, the same volatility, and correlation coefficients equal to zero. We 

introduce a minor estimation error in the expected return of Asset 1 and analyze its impact on the 

portfolios constructed by MVO and RO when the correlation coefficients between Asset 1 and 

Asset 2 varies from -99% to 99%.  
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II. Modelling of Uncertainty Set 
 

The RO applied to portfolio construction can be reformulated by modifying the MVO through a 

max-min process (Scherer 2006): first, one finds, within the uncertainty set 𝑼𝝁, the worst-case 

expected returns of assets. They are defined as the realized returns that deviate most negatively 

from the estimated expected returns �̂�. As discussed in the introduction, the drawbacks of the 

MVO exist regardless of the estimated expected returns used; we can assume, without loss of 

generality, that the expected returns are estimated by sample mean �̂� =  �̅�. Once the worst-case 

expected returns are obtained, the optimization process maximizes the portfolio returns, computed 

with the worst-case expected returns, under the risk constraint.  

max
𝒘

( min
𝝁 ∈𝑼𝝁

( 𝒘𝑇𝝁) −
𝜆

2
𝒘𝑇𝚺𝒘))     (Equation 1.1) 

With 𝒘 the 𝑛 × 1 vector of portfolio weights, 𝝁 the 𝑛 × 1 vector of expected returns, 𝜆 the risk 

aversion parameter and 𝚺 the 𝑛 × 𝑛 covariance matrix of asset returns.  

Below, we advocate the use of a quadratic form with diagonal matrix of the sample variance of 

asset returns to define the uncertainty set in the robust portfolio optimization.  

A. Form of Uncertainty Set 

The discussion of RO’s application in portfolio management revolves around the choice of 

uncertainty set and the calibration of its parameters. Fabozzi et al. (2007) presented two forms of 

uncertainty set: box uncertainty set and quadratic uncertainty set.  

Box Uncertainty Set 

The box uncertainty set 𝑈𝝃(�̅�) is the simplest way to express the uncertainty in inputs. Assume 

that there are 𝑛 assets in the investment universe. The expected return 𝝁 is estimated by the sample 

mean  �̅� . The uncertainty is assumed smaller than a constant vector  𝝃 ≥ 𝟎 . Expressing this 

uncertainty set in mathematical form yields: 

𝑼𝝁 = {𝝁 | |𝜇𝑖 −  �̅�𝑖| ≤  𝜉𝑖 , 𝑖 = 1,2, … , 𝑛 }    (Equation 1.2) 

Note that the box uncertainty set, in fact, models the estimation error in the expected return of each 

asset separately. In other words, each asset’s expected return has its individual confidence intervals 

around its own average. 

Following Fabozzi et al. (2007) and Heckel et al. (2016), we derive the robust portfolio 

optimization problem with box uncertainty set: 

max
𝒘

( min
𝝁 ∈𝑼𝝁

( 𝒘𝑇𝝁) −
𝜆

2
𝒘𝑇𝚺𝒘)) , 𝑼𝝁 = {𝝁 | |𝜇𝑖 − �̅�𝑖| ≤  𝜉𝑖, 𝑖 = 1,2, … , 𝑛}    (Equation 1.3) 
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Equation 1.3 can be reformulated into a robust version of MVO by minimizing the worst case 

portfolio return 𝒘𝑇𝝁 and then putting it back into the MVO optimization. 

Minimizing 𝒘𝑇𝝁  for 𝝁  within the uncertainty set defined by |𝜇𝑖 −  �̅�𝑖| ≤  𝜉𝑖 , 𝑖 = 1,2, … , 𝑛  is 

equivalent to maximize 𝒘𝑇𝝁 ̅ − 𝒘𝑇𝝁 for 𝝁 within the uncertainty set. The equivalence is validated 

by the fact that  min
 𝝁 ∈𝑼𝝁

( 𝒘𝑇𝝁) =  max
𝝁 ∈𝑼𝝁

(−𝒘𝑇𝝁). Note that the worst-case portfolio return would be 

obtained when 𝜇𝑖 −  �̅�𝑖 = − 𝜉𝑖, ∀ 𝑖 = 1, … , 𝑛. Let 𝜅 = ∑  𝜉𝑖
𝑛
𝑖=1 ,  

𝒘𝑇𝝁 ̅ − 𝒘𝑇𝝁 ≤  ∑ |𝜇𝑖 −  �̅�𝑖|
𝑛
𝑖=1 max(|𝑤𝑖|) ≤  𝜅 max(|𝑤𝑖|)      (Equation 1.4) 

The worst-case portfolio return 𝒘𝑇𝝁  is achieved when the above inequality is saturated 

and 𝒘𝑇𝝁 = 𝒘𝑇𝝁 ̅ −  𝜅 max(|𝑤𝑖|). Inputting the 𝒘𝑇𝝁 ̅ −  𝜅 max(|𝑤𝑖|) into the objective function 

yields: 

max 
𝒘

(𝒘𝑇�̅� −  𝜅 max(|𝑤𝑖|) −
𝜆

2
𝒘𝑇𝚺𝒘)          (Equation 1.5) 

Quadratic Uncertainty Set 

The quadratic uncertainty set takes a step further by including the uncertainty matrix, 𝛀𝝁. It is 

assumed that the expected returns 𝝁 are normally distributed with mean vector  �̅�. Hence, the 

uncertainty 𝝁 − �̅� follow a multivariate normal distribution with mean 𝟎 and covariance matrix 

of uncertainty in mean return 𝛀𝝁. The uncertainty set around the estimated mean return can be 

written as follows: 

𝑼𝝁 = {𝝁 | (𝝁 −  �̅�)𝑇𝛀𝝁
−1(𝝁 −  �̅�) ≤  𝜅2 }      (Equation 1.6) 

Here, the constant scalar 𝜅2 represents the level of uncertainty. The above uncertainty set covers 

all possible expected returns 𝝁 within the level of uncertainty 𝜅2. Provided with this formulation, 

one can define the expected returns that deviate most negatively from the estimated returns within 

a certain level of uncertainty.  

In the case of a quadratic uncertainty set, the robust portfolio optimization can be formulated as 

follows: 

max
𝒘

( min
𝝁 ∈𝑼𝝁

( 𝒘𝑇𝝁) −
𝜆

2
𝒘𝑻𝚺𝒘)) , 𝑼𝝁 = (𝝁 − 𝝁 ̅)𝑇𝛀−𝟏(𝝁 − 𝝁 ̅) ≤  𝜅2       (Equation 1.7) 

The solution to the RO can be obtained in two steps. The first step involves finding the worst-case 

realized returns from the confidence region derived from the uncertainty set. Minimizing 𝒘𝑇𝝁 for 

𝝁 within the uncertainty set defined by 𝑼𝝁 is equivalent to maximizing 𝒘𝑇𝝁 ̅ − 𝒘𝑇𝝁 for 𝝁 within 

the uncertainty set: 

max
𝝁

(𝒘𝑇𝝁 ̅ − 𝒘𝑇𝝁)      𝑠. 𝑡.  (𝝁 − 𝝁 ̅)𝑇𝛀−𝟏(𝝁 − 𝝁 ̅) ≤  𝜅2      (Equation 1.8) 
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Rewriting Equation 1.8 with the Lagrangian:  

ℒ
𝝁

( �̅�, 𝛿) =  𝒘𝑇𝝁 ̅ − 𝒘𝑇𝝁 − 𝛿((𝝁 − 𝝁 ̅)𝑇𝛀−𝟏(𝝁 − 𝝁 ̅) −  𝜅2)       (Equation 1.9) 

Solving Equation 1.9 yields: 

𝝁 =  𝝁 ̅ − √
𝜅2

𝒘𝑻𝛀𝒘
 𝛀𝒘        (Equation 1.10) 

Substituting the above formula for 𝝁 into MVO transforms Equation 1.1: 

max 
𝒘

(𝒘𝑇𝝁 ̅ −  √
𝜅2

𝒘𝑻𝛀𝒘
 𝒘𝑇𝛀𝒘 −  

𝜆

2
𝒘𝑇𝚺𝒘)         (Equation 1.11) 

We note the optimal robust portfolio weights as 𝒘𝑟𝑜𝑏
∗ : 

𝒘𝑟𝑜𝑏
∗ = argmax(𝒘𝑇�̅� − 𝜅√𝒘𝑇𝛀𝒘 −

𝜆

2
𝒘𝑇𝚺𝒘)      (Equation 1.12) 

It is worth mentioning that the quadratic uncertainty set 𝑈𝛿(�̅�) jointly models the errors of the 

expected returns of all assets. Depending on the choice of uncertainty matrix, different 

relationships between errors can be considered. If the uncertainty matrix is (proportional to) the 

covariance matrix, then, one implicitly assumes that the estimation errors among expected returns 

have the same correlation structure as the point estimates. If the uncertainty matrix is a diagonal 

matrix, then, the estimation errors are supposed to be uncorrelated. 

Both box and quadratic uncertainty sets can be used to model the uncertainty set. However, 

Equation 1.5 illustrates the robust counterpart of MVO resulting from the box uncertainty set, and 

it is evident that the optimization penalizes only the mean return of the asset that has the largest 

absolute weight. This property is not desirable because the asset with the largest weight is not 

necessarily the asset that has the largest uncertainty in expected return estimation. Moreover, the 

presence of the absolute value operator makes Equation 1.5 not differentiable. On the other hand, 

the robust counterpart generated by the quadratic uncertainty set in Equation 1.11 provides a 

sounder representation of robustness because it penalizes the estimated returns of all assets jointly 

by taking into account the risks introduced by Ω. Thus, we prefer using quadratic form of 

uncertainty set. 

There are other arguments, mentioned by authors in RO literature, for choosing the quadratic form 

of uncertainty set over the box uncertainty set: 

1. Ben-Tal and Nemirovski (1998) review both box and quadratic uncertainty sets and argue that 

the latter leads to a tractable robust counterpart of the convex optimization problem while the 

robust counterpart induced by box uncertainty set is only tractable in linear programming.  
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2. Pachamanova and Fabozzi (2016) point out that the box uncertainty set assumes that all assets 

will achieve their worst-case return at the same time and this assumption is not verified in 

practice. They suggest that it may be more practical to assume that not all assets attain their 

worst-case returns at the same time and more informative to take into account the variance-

covariance structure of the expected returns as formulated with a quadratic uncertainty set. 

3. Goldfarb and Iyengar (2003) demonstrated analytically that the quadratic uncertainty set is 

generated naturally from the estimation process using regression when the expected returns are 

estimated with a linear factor model, which is quite common in the finance industry. 

 

In conclusion, we advocate the use of quadratic uncertainty set in RO. In the remainder of the 

paper, we focus on the RO with quadratic uncertainty set.  

RO with Quadratic Uncertainty Set and MVO 

Now, let us take a closer look at the RO with a quadratic uncertainty set and the potential 

improvement it provides compared to MVO. At the optimum, the gradient of Equation 1.12 is 

equal to zero. It is important to note that the optimal robust weights 𝒘𝑟𝑜𝑏
∗  satisfy the following 

equality when at least one of the optimal weights is different from zero: 

𝝁 ̅ −  
𝜅

√𝒘𝑟𝑜𝑏
∗𝑇 𝛀𝒘𝑟𝑜𝑏

∗
𝛀𝒘𝑟𝑜𝑏

∗ −  𝜆𝚺𝒘𝑟𝑜𝑏
∗ = 0                (Equation 1.13)  

Note that MVO optimal portfolio weights 𝒘𝑀𝑉𝑂
∗  can be obtained by setting to zero the derivative 

of 𝒘𝑇�̅� −
𝜆

2
𝒘𝑇𝚺𝒘, with respect to 𝒘: 

𝝁 ̅ −  𝜆𝚺𝒘𝑀𝑉𝑂
∗ = 0       (Equation 1.14) 

By rearranging the terms and inverting 𝚺, we get:  

𝒘𝑀𝑉𝑂
∗ =  

1

𝜆
𝚺−1𝝁 ̅   (Equation 1.15) 

Roncalli (2013) points out that the inversion of a covariance matrix 𝚺 with small eigenvalues is 

the main cause of the high sensitivity to inputs and possible counter-intuitive long-short position 

suffered by MVO. However, in a covariance matrix  𝚺 , there are two elements: correlation 

coefficients and volatilities. Are they both responsible for creating small eigenvalues? To answer 

this question, note that optimizing on weights 𝒘, 𝚺 and 𝝁 ̅ is equivalent to optimizing on risk 

budgets  𝒙 =  𝝈 × 𝒘 , with 𝝈  the 𝑛 × 1  vector of volatilities of assets, ×  the element-wise 

multiplication operator and 𝒙 the 𝑛 × 1 vector of risk budgets, 𝑷 =
𝚺

𝝈𝝈𝑇 correlation matrix and 

𝑺𝑹̅̅ ̅̅ = 𝝈−𝟏 × �̅� Sharpe ratios. The advantage of expressing MVO with risk budgets and correlation 

matrix is that the effect of correlation on the small eigenvalues of 𝚺 is separated from that of 

volatilities. Equation 1.15 can be reformulated in terms of  𝑺𝑹 ̅̅ ̅̅̅, 𝑷 and 𝒙𝑀𝑉𝑂
∗ , assuming 𝜆 = 1: 
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𝒙𝑀𝑉𝑂
∗ = 𝑷−1𝑺𝑹 ̅̅ ̅̅̅      (Equation 1.16) 

Equation 1.16 shows that the Sharpe ratios and the correlation matrix are two parameters that are 

responsible for the drawbacks of MVO mentioned earlier. In fact, MVO aims to exploit the 

differences in Sharpe ratios while taking into account the correlations among assets. Once the 

MVO optimal risk budgets are determined, the volatilities are there to yield the final portfolio 

weights. This last step is linear and does not involve any inversion of matrix.  

Because P is symmetric and positive semi-definite, it can be decomposed into 𝑷 = 𝐙𝐋𝒁𝑇 , with Z 

the matrix of eigenvectors of P and L the diagonal matrix with eigenvalues of P on the diagonal. 

Equation 1.16 can be transformed as:  

𝒙𝑀𝑉𝑂
∗ = 𝒁𝑳−𝟏𝒁𝑇𝑺𝑹 ̅̅ ̅̅̅       (Equation 1.17) 

By expressing Equation 1.17 in the spaces spanned by the eigenvectors of 𝐏, we get: 

𝒙∗̈
𝑀𝑉𝑂 = 𝑳−𝟏𝑺𝑹 ̅̅ ̅̅̅̈         (Equation 1.18) 

With �̈�𝑴𝑽𝑶, the optimal MVO weights expressed in the spaces spanned by the eigenvectors of 𝚺 

and 𝑺𝑹 ̅̅ ̅̅̅̈  the expected returns of eigenvectors of 𝚺. 2 The expected returns on eigenvectors are 

closely related to the expected returns of the assets. 

Equation 1.18 shows two origins of the drawbacks of the MVO:  

1. Inversion of small eigenvalues in 𝑳−𝟏  which is the diagonal matrix of eigenvalues of 

correlation matrix 𝐏. 

 

2. Non-negligible expected returns in 𝑺𝑹 ̅̅ ̅̅̅̈  of the eigenvectors of   𝐏  associated with small 

eigenvalues.  

Once the origins of the drawbacks are determined, the ways that RO with a quadratic uncertainty 

set improves MVO become clearer. Equation 1.13 sheds light on the modification of the MVO 

optimality condition induced by the introduction of uncertainty in the objective function. There 

are two ways to interpret Equation 1.13 compared to Equation 1.14. These two interpretations 

represent two ways in which RO mitigates the drawbacks of the MVO.  

Modification of 𝚺:  𝝁 ̅ −  𝜆 (
𝜅

𝜆√𝒘𝑟𝑜𝑏
∗𝑇 𝛀𝒘𝑟𝑜𝑏

∗
𝛀 +  𝚺) 𝒘𝑟𝑜𝑏

∗ = 0        (Equation 1.19) 

                                                           
2 In view of the fact that eigenvectors correspond to the weights on the assets, each vector in the matrix of eigenvectors can be 

viewed as a portfolio formed from the original assets. Henceforth, when multiplying the eigenvectors by the Sharpe ratios, we can 

get the expected return of the eigenvectors. Recall that in a setting of correlation matrix and Sharpe ratios, the latter play the same 

role as expected returns in a setting of covariance matrix and expected returns. 
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By factoring  𝒘𝑟𝑜𝑏
∗ , Equation 1.13 illustrates the modification of covariance matrix when the 

uncertainty is introduced in the objective function. It is evident that the choice of the uncertainty 

matrix 𝛀 can have a huge impact on the final covariance matrix that will be inverted. As shown in 

the introduction as well as in Equation 1.14, the inverse of an ill-conditioned matrix is responsible 

for the instabilities in MVO. The robustness of the RO depends on the choice of 𝛀. Based on 

Equation 1.19, we analyze four major uncertainty matrices later in this subsection. 

Modification of 𝝁 ̅: (𝝁 ̅– 
𝜅

√𝒘𝑟𝑜𝑏
∗𝑇 𝛀𝒘𝑟𝑜𝑏

∗
𝛀𝒘𝑟𝑜𝑏

∗ ) −  𝜆𝚺𝒘𝑟𝑜𝑏
∗ = 0     (Equation 1.20) 

By grouping the first two terms on the left-hand side, Equation 1.13 represents the modification of 

expected returns by the uncertainty. In this formulation, the original covariance matrix is not 

modified, however, the 𝝁 ̅ are adjusted so that the expected returns of eigenvectors of 𝚺 associated 

with small eigenvalues are neutralized. Inspired by Equation 1.20, we discuss the choice of 𝜅 in 

Section II.C.  

B. Choice of Uncertainty Matrix in Quadratic Uncertainty Set 

Equation 1.19 shows that the effectiveness of RO with a quadratic uncertainty set to improve MVO 

depends heavily on the uncertainty matrix. In the RO literature, four types of uncertainty matrices 

are proposed. On the one hand, Scherer (2006) used an uncertainty matrix for the estimation error 

𝛀 that is proportional to the covariance matrix of asset returns 𝚺. For the sake of simplicity, we 

analyze the case 𝛀 = 𝚺 in this subsection. This simplification can be done without loss of 

generality. On the other hand, Stubbs and Vance (2005) suggested that when working with 

uncertainty at the asset level, retaining only the diagonal part of 𝚺, i.e., 𝛀 ∝ diag(𝚺) is preferable, 

however they did not provide any justification. More recently, Heckel et al. (2016) studied the 

optimal portfolios yielded by two other uncertainty matrices: the identity matrix and the diagonal 

matrix of sample volatilities. All four uncertainty matrices will be examined in this subsection. 

The choice of the uncertainty matrix will be based on its effectiveness in mitigating the drawbacks 

of the MVO mentioned in the introduction: high sensitivity to inputs and possible counter-intuitive 

positions in the optimal portfolios. 

The analysis of uncertainty matrix starts with Equation 1.19, since at the optimum √𝒘𝑟𝑜𝑏
∗𝑇 𝛀𝒘𝑟𝑜𝑏

∗  

is just a number. By noting 
𝜅

√𝒘𝑟𝑜𝑏
∗𝑇 𝛀𝒘𝑟𝑜𝑏

∗
 as 𝛽 and 

𝛽

𝜆+ 𝛽
 as 𝜂, we get: 

𝝁 ̅ =  (𝛽𝛀 +  𝜆𝚺)𝒘𝑟𝑜𝑏
∗    (Equation 1.21) 

𝝁 ̅

(𝜆+𝛽)
= (𝜂𝛀 + (1 − 𝜂)𝚺)𝒘𝑟𝑜𝑏

∗        (Equation 1.22) 
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Instead of inverting 𝚺, the solution to RO with a quadratic uncertainty set requires the inversion of 

a modified covariance matrix 𝜂𝛀 + (1 − 𝜂)𝚺.  

CASE 1: 𝛀 = 𝚺 =   (
𝜎1

2 ⋯ 𝜌1𝑛𝜎1𝜎𝑛

⋮ ⋱ ⋮
𝜌1𝑛𝜎1𝜎𝑛 ⋯ 𝜎𝑛

2
)  

By replacing 𝛀 by 𝚺 in the new modified covariance matrix, we get: 

𝜂𝛀 + (1 − 𝜂)𝚺 = 𝚺     (Equation 1.23) 

There is no change to the original covariance matrix. The RO, formulated with this uncertainty 

matrix, cannot mitigate the drawbacks of the MVO. Note that this uncertainty matrix was studied 

by Scherer (2006).  

CASE 2: 𝛀 = diag(𝚺) = (
𝜎1

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑛

2
) with 𝜎1

2, 𝜎𝑛
2 the variances of asset 1 and asset 𝑛 

𝜂𝛀 + (1 − 𝜂)𝚺 =  𝜂 (
𝜎1

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑛

2
) +  (1 − 𝜂) (

𝜎1
2 ⋯ 𝜌1𝑛𝜎1𝜎𝑛

⋮ ⋱ ⋮
𝜌1𝑛𝜎1𝜎𝑛 ⋯ 𝜎𝑛

2
)   (Equation 1.24) 

With 𝜌1𝑛 the correlation coefficient between asset 1 and asset 𝑛. 

The new covariance matrix, in Equation 1.22, is now a weighted average between the original 

covariance matrix and the diagonal matrix of sample variances.  

CASE 3: 𝛀 = 𝑰𝑛, with 𝑰𝑛 the 𝑛 × 𝑛 identity matrix 

𝜂𝛀 + (1 − 𝜂)𝚺 =  𝜂 (
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

) +  (1 − 𝜂) (
𝜎1

2 ⋯ 𝜌1𝑛𝜎1𝜎𝑛

⋮ ⋱ ⋮
𝜌1𝑛𝜎1𝜎𝑛 ⋯ 𝜎𝑛

2
)    (Equation 1.25) 

The new covariance matrix, in Equation 1.22, is a weighted average between the original 

covariance matrix and the identity matrix. 

CASE 4: 𝛀 = sqrt(diag(𝚺)) =  (
𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑛

) 

𝜂𝛀 + (1 − 𝜂)𝚺 =  𝜂 (
𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑛

) + (1 − 𝜂) (
𝜎1

2 ⋯ 𝜌1𝑛𝜎1𝜎𝑛

⋮ ⋱ ⋮
𝜌1𝑛𝜎1𝜎𝑛 ⋯ 𝜎𝑛

2
)   (Equation 1.26) 
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The new covariance matrix, in Equation 1.22, is a weighted average between the original 

covariance matrix and the diagonal matrix of sample volatilities. 

Uncertainty Matrices Selection: Criteria 

Equation 1.16 shows that the part of the covariance matrix that is responsible for the high 

sensitivity to inputs is the correlation matrix. Reducing the sensitivity to inputs consists of 

eliminating small eigenvalues from the correlation matrix according to Equation 1.18. Appendix 

A demonstrates the equivalence between eliminating small eigenvalues from the correlation matrix 

and shrinking the correlation coefficients towards zero.  

In contrast to the correlation coefficients, according to Equation 1.16, the role of volatilities in the 

solution to MVO in terms of risk budgets is merely a scaling factor to determine the final portfolio 

weights. Therefore, the original volatilities are not accountable for the high sensitivity to inputs 

suffered by MVO. Moreover, Equation 1.22 shows that the expected returns of all assets are scaled 

by the same factors in all robust optimization settings; hence, RO does not change the relative 

magnitude of the expected returns. Therefore, if volatilities are unchanged, it can be guaranteed 

that the relative magnitude of the Sharpe ratios is preserved. 

From the above remarks, we propose the following criteria to select the uncertainty matrix: 

1. The ideal uncertainty matrix is expected to reduce the sensitivity to inputs by shrinking the 

original correlation coefficients towards zero.  
 

2. The ideal uncertainty matrix should keep the original volatilities unchanged.  

Uncertainty Matrices Selection: Result 

From the reduction of sensitivity to inputs perspective, we note that on the one hand, case 1 with 

the uncertainty matrix equal to the covariance matrix provides no reduction of sensitivity to inputs 

of the optimization solution because the correlation coefficients are unmodified. On the other hand, 

cases 2, 3 and 4 all consist of a weighted average between an uncertainty matrix that is diagonal 

and covariance matrices. Given the fact that all the off-diagonal terms in the uncertainty matrices 

are zero in cases 2, 3 and 4, they all shrink the original correlation coefficients towards zero. 

Regarding the second criterion, note that the diagonal terms of the uncertainty matrices in case 1 

and 2 are equal to those of the original covariance matrix. Thus, the introduction of uncertainty 

matrices specified as in case 1 and case 2 leaves the diagonal terms of the new covariance matrix 

unchanged while the diagonal terms of both uncertainty matrices from case 3 and 4 are different 

from those of the original covariance matrix. Henceforth, using uncertainty matrices from case 3 

and 4 would lead to changes in volatilities while the introduction of uncertainty matrices specified 

as in case 1 and 2 would preserve the original volatilities. Moreover, the changes in volatilities 

with case 3 and 4 are difficult to control as the weighting factor, which depends on 𝒘𝑟𝑜𝑏
∗ , is 

endogenous.  
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Summarizing the above analyses, it is evident that the diagonal matrix with variances on the main 

diagonal is the best candidate for the uncertainty matrix. Unlike the covariance matrix, it is 

effective in shrinking the correlation coefficients towards zero, which a) reduces the condition 

number of the correlation matrix, b) eliminates the small eigenvalues and c) attenuates the 

sensitivity of the solution to inputs. Moreover, unlike the identity matrix or the diagonal matrix 

with the volatility on the main diagonal, the uncertainty set constructed from 𝛀 = diag(𝚺) 

achieves the aforementioned amelioration without distorting the volatility structure of the risk 

model. Thus, we prefer the diagonal matrix with variances on the main diagonal as the uncertainty 

matrix, corresponding to Case 2 in Table 1.  

C. Choice of Level of Uncertainty Parameter: 𝜿 

Analytical Framework 

Once the choice of the uncertainty matrix is determined, we concentrate on the level of uncertainty 

parameter 𝜅. From now on, we fix the diagonal matrix of sample variances as the uncertainty 

matrix. Bearing in mind that the diagonal matrix of sample variances does not change the 

volatilities of the new covariance matrix used in RO, we can analyze the optimization problem in 

terms of risk budget and correlation matrix.  

Many RO literature contributors analyze 𝜅 solely from a probabilistic and statistical point of view 

and treat it as the size of the confidence region around the expected returns. For instance, Scherer 

(2006) argues that the 𝜅𝛼,𝑛
2 =  𝜒𝑛

2(1 − 𝛼),  where 𝜒𝑛
2(1 − 𝛼)  is the inverse of a chi-squared 

cumulative distribution with 𝑛 degrees of freedom. Fabozzi et al. (2007) propose that 𝜅 represents 

the level of the scaled deviation of realized returns from the forecasts against which one wish to 

be protected. However, the authors tend to ignore another aspect of 𝜅, namely, that 𝜅 is a key 

parameter in an optimization problem and it should satisfy the first order condition at optimum. In 

this section, we investigate the manner by which to determine the right parameter of robustness. 

We also provide a rule of thumb for the calibration of 𝜅 in the multi-asset investment universe.  

Upper Bound for 𝜿 

For the sake of notational convenience, we reformulate the RO stated in Equation 1.12 in terms of 

the estimated Sharpe ratios 𝑺𝑹̅̅ ̅̅  , risk budget 𝑿  and correlation matrix 𝐏. For simplicity and 

Table 1: Uncertainty Matrix Characteristics

Case 1: Ω = Σ Case 2: Ω =  diag(Σ) Case 3: Ω = I Case 4: Ω = sqrt(diag(Σ))

Reducing Sensitivity No Yes Yes Yes

Preserving Volatilities Yes Yes No No

Note: Ω = uncertainty matrix

Σ = estimated variance covariance matrix

sqrt(diag(Σ)) = the diagonal matrix with volatilities on the main diagonal

I = Identity Matrix



15 

 

without loss of generality, we assume that 𝜆 is equal to 1. We note the optimal robust risk budget 

as 𝑿𝑟𝑜𝑏
∗ : 

𝑿𝑟𝑜𝑏
∗  = argmax(𝑿𝑇𝑺𝑹̅̅ ̅̅ − 𝜅√𝑿𝑇𝑰𝑛𝑿 −

1

2
𝑿𝑇𝐏𝑿)       (Equation 1.27) 

Deriving the optimality condition: 

𝑺𝑹 ̅̅ ̅̅̅ − (
𝜅

√𝑿𝑟𝑜𝑏
∗ 𝑇

𝑿𝑟𝑜𝑏
∗

 𝑰𝑛 +  𝐏) 𝑿𝑟𝑜𝑏
∗ = 0   (Equation 1.28) 

In addition, rearranging it yields the following expression: 

𝑺𝑹 ̅̅ ̅̅̅ =  (
𝜅

√𝑿𝑟𝑜𝑏
∗𝑇 𝑿𝑟𝑜𝑏

∗
𝑰𝑛  +  𝐏) 𝑿𝑟𝑜𝑏

∗    (Equation 1.29) 

The above formulation sheds light on the role of 𝜅 as the parameter that tackles the high sensitivity 

to inputs suffered by MVO. In fact, the greater 𝜅 is, the more 
𝜅

√𝑿𝑟𝑜𝑏
∗𝑇 𝑿𝑟𝑜𝑏

∗
𝑰𝑛  +  𝐏 shifts towards 𝑰𝑛. 

The shift of the modified correlation matrix towards 𝑰𝑛 helps to reduce the high sensitivity caused 

by the small eigenvalues but the benefit does not come without cost: a large 𝜅  may distort 

completely the correlation structure that makes assets indistinguishable from a risk perspective.  

Taking the L2-Norm on both sides’ yields: 

𝑺𝑹 ̅̅ ̅̅̅𝑇𝑺𝑹 ̅̅ ̅̅̅ = 𝜅2 +  𝑿𝑟𝑜𝑏
∗𝑇 𝐏𝑇𝐏𝑿𝑟𝑜𝑏

∗ + 2 ×
𝜅

√𝑿𝑟𝑜𝑏
∗𝑇 𝑿𝑟𝑜𝑏

∗
𝑿𝑟𝑜𝑏

∗𝑇 𝐏𝑿𝑟𝑜𝑏
∗     (Equation 1.30) 

Note that the second term on the right-hand side 𝑿𝑟𝑜𝑏
∗𝑇 𝐏𝑇𝐏𝑿𝑟𝑜𝑏

∗ , as the square of the L2 Norm 

of 𝐏𝑿𝑟𝑜𝑏
∗ , is non-negative; the third term on the right-hand side is also non-negative because 𝐏 is 

positive semi-definite, the L2 Norm of 𝑿𝑟𝑜𝑏
∗  is non-negative and 𝜅2  is always non-negative. 

Therefore, the following upper bound for 𝜅 holds: 

𝜅 ≤  √𝑺𝑹 ̅̅ ̅̅̅𝑇𝑺𝑹 ̅̅ ̅̅̅   (Equation 1.31) 

Note that if 𝜅 is set higher than the upper bound, the first order derivative of the optimization with 

respect to 𝑿 will always be negative. Therefore, the solution to the RO will be no-investment, 

i.e., 𝑿 = 𝟎. 

Rule of Thumb for Calibrating κ in a Multi-Asset Investment Universe 

The upper bound can help us narrow the range for 𝜅, but it is still not sufficient to determine its 

suitable value. A more efficient approach can be related to the nature of the high sensitivity of an 
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MVO solution to small changes in inputs. Recall that the solution to an MVO, viewed on the basis 

defined by the eigenvectors of the correlation matrix and assuming 𝜆 is equal to 1, is given by: 

�̈�𝑴𝑽𝑶 = 𝑳−𝟏𝑺𝑹 ̅̅ ̅̅̅̈  . It is evident that the sensitivity of an MVO to inputs is caused by the small 

eigenvalues, which amplify the expected returns of the corresponding eigenvectors. From this 

perspective, both the uncertainty matrix and 𝜅 address the sensitivity to inputs but from different 

angles: the introduction of a diagonal matrix of sample variances as the uncertainty matrix leads 

to an attenuation of the dispersion of eigenvalues, while 𝜅 can essentially be viewed as reducing 

the expected returns of the eigenvectors corresponding to the small eigenvalues. 

We first provide an analytical illustration of the way 𝜅 can be used to reduce the aforementioned 

expected returns. Then, we propose a rule of thumb for determining 𝜅 based on a practical multi-

asset example, which indicates that, the choice of 𝜅 does not depend on the number of assets in the 

optimization universe. Note that we do not pretend to find an exact formula to calibrate 𝜅, rather, 

we propose a rule of thumb that can be helpful in practical application of RO in a multi-asset 

portfolio. 

As shown at the beginning of this section, RO is a max-min process. The objective is to maximize 

the objective function even under the worst return realization. Thus, the RO uses penalized returns 

(𝝁) instead of the traditional expected returns from the sample mean (𝝁 ̅): 

𝝁 =  𝝁 ̅ − √
𝜅2

𝒘𝑻𝛀𝒘
 𝛀𝒘, with 𝛀 = diag(𝚺)    (Equation 1.32) 

Once again, re-expressing just the above equation in terms of the Sharpe ratios and risk budget 

yields the following expression: 

𝑺𝑹 =  𝑺𝑹̅̅ ̅̅ −  
𝜅

‖𝑿‖2
𝑿    (Equation 1.33) 

The expected returns on the eigenvectors can be found easily when we apply the L2 Norm of 𝑺𝑹 

expressed in the spaces spanned by the eigenvectors of correlation matrix 𝐏.  

Consider the eigenvalues-eigenvectors decomposition of the correlation matrix 𝐏 = 𝐙𝐋𝐙𝑇, with 𝐙 

the matrix of the eigenvectors and 𝐋 the diagonal matrix with the eigenvalues on the main diagonal, 

the expected returns on the eigenvectors 𝑺𝑹̅̅ ̅̈̅  of 𝐏 can be found with the upper limit of 𝑺�̈�: 

‖𝑺�̈�‖
2

=  √𝑺𝑹̅̅ ̅̈̅ 𝑇𝑺𝑹̅̅ ̅̈̅ +  𝜅𝟐 − 2 ∗ 𝜅
𝑺𝑹̅̅ ̅̈̅ 𝑇�̈�

‖�̈�‖
2

≤  √𝑺𝑹̅̅ ̅̈̅ 𝑇𝑺𝑹̅̅ ̅̈̅ − 𝜅𝟐   (Equation 1.34) 

With 𝑺�̈� = 𝐙𝑇𝑺𝑹, 𝑺𝑹̅̅ ̅̈̅ = 𝐙𝑇𝑺𝑹̅̅ ̅̅  and �̈� = 𝐙𝑇𝑿, see Appendix B for details. 

‖𝑺�̈�‖
2

≤ √(𝒁𝑇𝑺𝑹)𝑇(𝒁𝑇𝑺𝑹) − 𝜅𝟐   (Equation 1.35) 
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Note that the right-hand side of Equation 1.35 can be rewritten in two ways: 

√(𝒁𝑇𝑺𝑹)𝑇(𝒁𝑇𝑺𝑹) − 𝜅𝟐 = √(𝒁1
𝑇𝑺𝑹)2 +  (𝒁2

𝑇𝑺𝑹)² + ⋯ (𝒁𝑛
𝑇𝑺𝑹)² − 𝜅𝟐     (Equation 1.36) 

√(𝒁𝑇𝑺𝑹)𝑇(𝒁𝑇𝑺𝑹) − 𝜅𝟐 =  √𝑺𝑹𝑇𝒁𝒁𝑇𝑺𝑹 − 𝜅𝟐 =  √𝑺𝑹𝑇𝑺𝑹 − 𝜅𝟐        (Equation 1.37) 

With 𝒁1 the eigenvector that corresponds to the largest eigenvalue. The vectors of 𝒁 are ordered 

following the order of eigenvalues (from the largest to smallest). 

The key for calibrating 𝜅 is to make use of the equivalence between Equation 1.36 and Equation 

1.37: when 𝜅 is calibrated in terms of the Sharpe ratios (Equation 1.37), it is able to reduce or even 

neutralize the cumulative sum of “returns” on eigenvectors that correspond to the small 

eigenvalues (Equation 1.36). Namely, 𝜅 =  √(𝒁𝑖
𝑇𝑺𝑹)² + ⋯ (𝒁𝑛

𝑇𝑺𝑹)² with 𝑖 to 𝑛 the indices that 

correspond to small eigenvalues. Small is a rather abstract term and it does not tell us how to 

choose the cut-off number 𝑖. In the empirical experiment below, we propose a rule of thumb to 

help us determine the cut-off number and thus to calibrate κ. 

Multi-Asset Universe Example 

Let us now proceed with a simulation in a multi-asset universe. The universe studied consists of 

23 indices encompassing the major asset classes. 

All data series are extracted from Bloomberg in net total returns and in local currency. The period 

covered runs from February 2003 to April 2019, with a monthly frequency. We carry out the 

simulation from a European investor perspective, so the net total returns in local currency of non-

EUR assets are transformed into returns in EUR with the following formula: (1 + 𝑅𝐸𝑈𝑅) = (1 +

𝑅𝐿𝑜𝑐𝑎𝑙)(1 + 𝑅𝐹𝑋), with 𝑅𝐸𝑈𝑅 the return in EUR, 𝑅𝐿𝑜𝑐𝑎𝑙 the return in local currency of non-EUR 

asset and 𝑅𝐹𝑋 the return of exchange. To yield excess net total returns in EUR, we subtract EONIA 

from the net total return in EUR. The correlation matrix is then computed using the monthly excess 

net total returns in EUR. The list of asset names, the corresponding Bloomberg tickers, the 

correlation matrix as well as the long term Sharpe ratios can be found in Appendix C. 

In order to show that the result of the calibration of 𝜅 in a multi-asset environment is almost 

invariant with respect to the size of the investment universe, we let the number of assets vary from 

3 to 21. We exclude the cases where numbers of assets equal to 22 and 23 because the correlation 

matrices are practically the same for different simulations. For each number of assets, we simulate 

1000 random combinations of assets and build 1000 different correlation matrices. We first assume 

that 𝑺𝑹̅̅ ̅̅ = 𝟏, with 𝟏 = (1, … , 1)𝑇 as the long term Sharpe ratios for major asset classes are quite 

close to each other except for cash. Later on, we will release this restriction by using the long term 

Sharpe ratios from Ilmanen (2011). For each number of assets, we carry out the following 

computation: 
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 Step1: For each correlation matrix simulated for this specific number of assets 𝑛, we compute 

the squared expected returns of the eigenvectors by assuming that all assets have a Sharpe ratio 

equal to 1. The squared expected returns of the eigenvectors are given by the following 

expression:(𝒁1
𝑇𝟏)², … , (𝒁𝑛

𝑇𝟏)2, with 𝒁1
𝑇 the transpose of the eigenvector that corresponds to 

the largest eigenvalue, 𝒁𝑛
𝑇  the transpose of the eigenvector that corresponds to the smallest 

eigenvalue and 𝟏 the vector of 1.  

 Step 2: We calculate the cumulative sum of the squared expected returns on the eigenvectors 

from the one that corresponds to the smallest eigenvalue to the one that corresponds to the 

largest eigenvalue: (𝒁𝑛
𝑇𝟏)², (𝒁𝑛

𝑇𝟏)² +  (𝒁𝑛−1
𝑇 𝟏)², … , (𝒁𝑛

𝑇𝟏)2 +  (𝒁𝑛−1
𝑇 𝟏)² + ⋯ + (𝒁1

𝑇𝟏)². For 

instance, for an investment universe of five assets, there are five cumulative sums. These 

cumulative sums are calculated for all the 1000 correlation matrices simulated. 

 Step 3: We take the average of the squared root of each cumulative sum of squared returns of 

eigenvectors computed with 1000 correlation matrices for a specific number of assets 𝑛 
1

1000
∑ √(𝒁𝑛

𝑇𝟏)2
𝑗

1000
𝑗=1 ,

1

1000
∑ √(𝒁𝑛

𝑇𝟏)2 + (𝒁𝑛−1
𝑇 𝟏)2

𝑗
1000
𝑗=1 , …, 

1

1000
∑ √(𝒁𝑛

𝑇𝟏)² + ⋯ + (𝒁1
𝑇𝟏)²

𝑗
1000
𝑗=1 . 

 

Figure 1 plots the squared root of cumulative sums of the squared returns of eigenvectors against 

the number of eigenvectors involved in each cumulative sum divided by the number of assets. 

Each colored line represents a specific number of assets, from 3 to 21. Viewed from the vertical 

axis, the data points on each of 18 colored lines represent 
1

1000
∑ √(𝒁𝑛

𝑇𝟏)2
𝑗

1000
𝑗=1 ,

1

1000
∑ √(𝒁𝑛

𝑇𝟏)2 + (𝒁𝑛−1
𝑇 𝟏)2

𝑗
1000
𝑗=1 , …,

1

1000
∑ √(𝒁𝑛

𝑇𝟏)² + ⋯ + (𝒁1
𝑇𝟏)²

𝑗
1000
𝑗=1  for the investment universe 
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Figure 1 illustrates that when 𝜅 is chosen to be half of the average of Sharpe ratios, which equals 

0.5; it corresponds to the squared root of cumulative sums of the squared returns of eigenvectors 

that correspond to 40% smallest eigenvalues. We conclude that when 𝜅 is equal to half of the 

average of Sharpe ratios, it allows the neutralization of the returns of eigenvectors that correspond 

to 40% smallest eigenvalues; this conclusion is valid regardless of the number of assets included 

in the investment universe. The cut-off threshold is chosen at 40% because, according to Figure 1, 

40% is the highest percentage we can choose while keeping the rule of thumb valid for different 

numbers of assets.  

Robustness Check of Rule of Thumb 

We obtained our rule of thumb of 𝜅 calibration by assuming all assets have the same Sharpe ratio. 

To examine whether our rule of thumb still applies if assets had different Sharpe ratios, we conduct 

a simple robustness check of our rule of thumb with the long term Sharpe ratios proposed by 

Ilmanen (2011). We calculate accordingly the squared expected returns of the eigenvectors in Step 

1: (𝒁1
𝑇𝑺𝑹)², … , (𝒁𝑛

𝑇𝑺𝑹)2, with 𝑺𝑹 the vector of long term Sharpe ratios extracted from Ilmanen 

(2011) and detailed in Appendix C. The average of the Sharpe ratios is equal to 0.46 now. Again, 

we find our rule of thumb: when 𝜅 is equal to half of the average of Sharpe ratios (0.23), it allows 

the neutralization of the returns of eigenvectors that correspond to 40% smallest eigenvalues. This 

conclusion remains valid regardless of the number of assets included in the investment universe. 

 

To summarize our analysis, the proposed rule of thumb consists of choosing 𝜅 as half of the 

average of Sharpe ratios. This rule of thumb applies for multi-asset portfolios regardless of the 

number of assets they comprise and regardless of the assumptions on Sharpe ratios. 
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III. Asset Allocation Examples 

In Section II.B, we mentioned that there are two ways to analyze the first order optimality condition 

of RO given by Equation 1.13. RO can be viewed as an MVO applied to a modified covariance 

matrix according to Equation 1.19 or as an MVO applied to modified expected returns following 

Equation 1.20 in Section II.B. RO, formulated with the uncertainty sets and the level of uncertainty 

we advocate in Section II, leads to portfolios that are well diversified in risks and that have less 

extreme long-short weight. Moreover, the high sensitivity to inputs suffered by MVO is reduced 

in RO too. In this section, we provide two examples to illustrate these claims.  

A. RO and MVO: Practical Asset Allocation 

The investment universe consists of four assets: US Equity, US Small Cap, US Sovereign and US 

Investment Grade (IG). The indexes used, in this example, can be found in Appendix C. We 

assume an identical Sharpe ratio that equals 0.46, the average of long term Sharpe ratio, for all 

assets. We prefer to use identical Sharpe ratio to show that MVO leads to large arbitrage positions 

in similar assets even when they have the same Sharpe ratio. The volatilities are equal to 19.14% 

for US Equity, 23.70% for US Small Cap, 9.89% for US Sovereign and 10.24% for US IG. They 

are estimated using monthly net total excess returns in EUR, already mentioned in Section II.C. 

The correlation matrix here is extracted from the original correlation matrix used in Section II.C. 

In this example, we assume that κ is equal to 0.23, which corresponds to half of the average of 

Sharpe ratios. There are neither minimum or maximum weights constraints, nor a full investment 

constraint. For all portfolio optimizations, we impose the constraint that the volatility of optimal 

portfolio cannot exceed 10%, which facilitates comparison among optimization results.  

The RO is performed with the uncertainty matrix equal to the diagonal of covariance matrix as 

proposed in Section II.B. We present also the results of the MVO in Table 3. Both portfolio weights 

and contributions to risk (CTR) are presented. The contributions to risk for an asset is given by the 

following formula: 𝐶𝑇𝑅𝑖 = 𝑤𝑖
𝚺𝒘

√𝒘𝑇𝚺𝒘
, with 𝑤𝑖 the weight of asset i, 𝚺 the covariance matrix and 

𝒘 the vector of portfolio weights. 

  

Table 2: Portfolio weights of different optimizations

Weights CTR Weights CTR

US Equity 19.14% 10.14% 1.45% 14.90% 2.32%

US Small Cap 23.70% 23.82% 4.23% 15.53% 2.75%

US Sovereign 9.89% 110.11% 8.15% 37.73% 2.77%

US IG 10.24% -49.95% -3.83% 25.24% 2.16%

Note: Ω = uncertainty matrix

diag(Σ) = Diagonal of variance covariance matrix

CTR = Contribution to risks

MVO RO with Ω =  diag(Σ)
Volatility
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Table 2 displays that MVO generates a very counter-intuitive portfolio with large long-short 

positions in US Sovereign and US IG. The long-short position in two similar assets is particularly 

undesirable when one wants to define the strategic asset allocation. In contrast to MVO, RO yields 

a portfolio with no large long-short arbitrage positions, even without any constraints on weights. 

The CTR calculations shed more light on the comparison between a robust optimal portfolio and 

an MVO portfolio. In RO,  the CTR are shrinking towards an equal risk budget portfolio, which is 

intuitive since the correlation matrix is shrinking to zero and the SR are the same for all assets. As 

shown by Leote de Carvalho et al (2012), equal risk budget is optimal in the limit of correlations 

coefficients converge to zero and SR are the same for all assets.  

In Tables 3, 4, 5 and 6, we present the original covariance matrix and correlation matrix as well as 

their modified versions in RO. Note that the formula of the modified covariance matrices is given 

by Equation 1.19. The RO with uncertainty matrix equal to the diagonal of covariance matrix 

shrinks the correlation coefficients towards zero while keeping the volatilities unchanged. We 

provide a concrete example to support our choice of uncertainty matrix in Section II.B. 

  

  

Table 7 illustrates that RO can reduce the high dispersion in eigenvalues created by the correlation 

coefficients. The high dispersion in eigenvalues means that small eigenvalues exist for the 

covariance matrix. The dispersion in eigenvalues is measured by the condition number, the details 

of which can be found in Appendix A. Belsley et al. (1980) state that a condition number higher 

than 5 indicates the presence of the collinearity in the covariance matrix, which would create high 

sensitivity to inputs of the regression result. Like MVO, linear regression requires also the 

inversion of a covariance matrix to get the result. Here, in the case of the original covariance matrix, 

the largest condition number is higher than 10. The extreme weights given by the MVO are due to 

an inversion of a covariance matrix suffering from collinearity. As shown in Table 7, RO, with the 

previously mentioned uncertainty matrix configuration, brings the condition number under the 

threshold and reduces the sensitivity to inputs.  

Table 3: Original correlation matrix

Correlation US Equity US Small Cap US Sovereign US IG

US Equity 100.00% 87.00% 26.00% 43.00%

US Small Cap 87.00% 100.00% 15.00% 29.00%

US Sovereign 26.00% 15.00% 100.00% 93.00%

US IG 43.00% 29.00% 93.00% 100.00%

Table 4: New correlation matrix used in RO with Ω =  diag(Σ)

Correlation US Equity US Small Cap US Sovereign US IG

US Equity 100.00% 48.30% 14.44% 23.87%

US Small Cap 48.30% 100.00% 8.33% 16.10%

US Sovereign 14.44% 8.33% 100.00% 51.63%

US IG 23.87% 16.10% 51.63% 100.00%

Table 5: Original covariance matrix

US Equity US Small Cap US Sovereign US IG

US Equity 3.66% 3.95% 0.49% 0.84%

US Small Cap 3.95% 5.62% 0.35% 0.70%

US Sovereign 0.49% 0.35% 0.98% 0.94%

US IG 0.84% 0.70% 0.94% 1.05%

Table 6: New covariance matrix used in RO with Ω =  diag(Σ)

US Equity US Small Cap US Sovereign US IG

US Equity 3.66% 2.19% 0.27% 0.47%

US Small Cap 2.19% 5.62% 0.20% 0.39%

US Sovereign 0.27% 0.20% 0.98% 0.52%

US IG 0.47% 0.39% 0.52% 1.05%



22 

 

 

Table 8, 9 and Table 10 illustrate that RO reduces the sensitivity to inputs by neutralizing the 

expected returns given to the eigenvectors that correspond to the small eigenvalues.  

In Table 8, we show the modified expected returns caused by RO with an uncertainty matrix equal 

to a diagonal matrix of sample variance as well as the original expected returns used in MVO. The 

formula used to compute the modified expected returns comes from Equation 1.20. The expected 

returns detailed in Table 8 are used to calculate the expected returns on eigenvectors illustrated in 

Table 10.  

 

Table 9 displays the eigenvectors of the original covariance matrix. The first eigenvector 

represents the common trend in the four assets; it can be interpreted as short market/equity risk 

factor. The second eigenvector has also a clear meaning; it represents short duration risk factor. 

The third and the last eigenvectors are just arbitrage portfolios without any meaningful 

interpretation. In particular, the last eigenvector, which corresponds to the smallest eigenvalue, 

consists of a large long-short portfolio in US Sovereign and US IG. The latter is responsible for 

the large arbitrage positions in US Sovereign and US IG in the MVO optimal portfolio.  

Table 7: Eigenvalues and condition numbers of different covariance matrices

Original Σ New Σ used in RO with Ω =  diag(Σ)

First Eigenvalue 8.92% 7.12%

Second Eigenvalue 1.82% 2.30%

Third Eigenvalue 0.52% 1.41%

Fourth Eigenvalue 0.05% 0.48%

Condition Number 1 12.93 3.84

Condition Number 2 4.16 2.25

Condition Number 3 2.21 1.76

Note: Condition Number 1 = sqrt( Biggest Eigenvalue / Smallest Eigenvalue)

Condition Number 2 = sqrt(Biggest Eigenvalue / Second Smallest Eigenvalue)

Condition Number 3 = sqrt(Biggest Eigenvalue / Third Smallest Eigenvalue)

Table 8: Original Expected Returns in MVO and Modified Expected Returns in RO 

Expected Returns MVO RO with Ω =  diag(Σ)

US Equity 8.80% 6.87%

US Small Cap 10.90% 7.82%

US Sovereign 4.55% 3.24%

US IG 4.71% 3.77%

Note: Ω = uncertainty matrix

diag(Σ) = Diagonal of variance covariance matrix
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Table 10 illustrates the expected returns of eigenvectors of 𝚺. With 𝜅 = 0.23, RO preserves the 

expected returns for the first two eigenvectors, which are not just the noises, as much as possible 

while significantly shrinking the expected return of the last two eigenvectors; in fact, the expected 

return of the last eigenvector in RO is only 5%, in absolute term, of that used in MVO. From 

previous results regarding the eigenvalues of 𝚺, the smallest eigenvalues, which are just noises, are 

the most harmful ones in the inversion of 𝚺 . By shrinking significantly the returns on the 

eigenvectors (here, the last two ones) corresponding to the smallest eigenvalues, RO reduces the 

sensitivity to inputs and limits the creation of arbitrage positions in highly correlated assets. The 

fact that only the expected returns of the last two eigenvalues are reduced significantly is not 

surprising. We mentioned, in Section II.C, when 𝜅 equals half of the average of Sharpe ratios, RO 

reduces the returns of 40% the smallest eigenvectors. Here, they correspond to the last two 

eigenvectors. 

 

B. RO and MVO: Sensitivity to Input Changes                                                                                

The objective of this second example is to show that RO attenuates the sensitivity to inputs 

compared to MVO. This example is based on three fictive assets. We assume that all three assets 

have the same Sharpe ratio (SR = 0.46), the same volatility (15%) and the same correlation (𝜌12 =

0, 𝜌13 = 0, 𝜌23 = 0). We perform the MVO and the RO with diagonal matrix of sample variance 

as the uncertainty matrix, subject to a full investment constraint. There is no constraint on 

maximum volatility and the aversion to risk 𝜆 is assumed equal to 1. In this example, we assume 

that κ is equal to 0.23, which corresponds to half of the average of Sharpe ratios.  

Table 11 exhibits the optimal portfolios of MVO and RO with the above inputs and settings. Note 

that both RO and MVO give rise to an equally weighted portfolio with 33.33% for each asset. This 

result is not surprising. When all assets are identical from both risk and return perspectives and 

Table 9: Eigenvectors of original covariance matrices

First Eigenvector Second Eigenvector Third Eigenvector Fourth Eigenvector

US Equity -61.19% -7.16% 78.15% -9.85%

US Small Cap -77.23% 26.30% -57.78% 2.24%

US Sovereign -8.94% -68.59% -21.95% -68.80%

US IG -14.53% -67.47% -8.50% 71.86%

Table 10: Expected Returns on the Eigenvectors of Original Covariance Matrix 

 MVO RO with Ω =  diag(Σ) Expected Return RO / Expected ReturnMVO

First Eigenvector -14.90% -11.08% 74.38%

Second Eigenvector -4.06% -3.21% 78.98%

Third Eigenvector -0.82% -0.18% 21.69%

Fourth Eigenvector -0.37% -0.02% 5.75%

Note: Ω = uncertainty matrix

diag(Σ) = Diagonal of variance covariance matrix
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their correlation is 0, then, the MVO optimal portfolio coincides with the risk-based portfolio. The 

latter in this case is an equally weighted portfolio (Leote de Carvalho et al. 2012).  

 

To assess the sensitivity to inputs of both MVO and RO, we increase the expected return of asset 

1 by 0.15% (which corresponds to an increase of 0.01 in Sharpe ratio) and we vary 𝜌12 , the 

correlation coefficient between asset 1 and asset 2 from −99% to 99%. The change in expected 

return is made deliberately small to show that MVO could create large arbitrage portfolio even 

with very small discrepancy in expected returns. In Appendix D, we provide the result of the same 

exercise when the expected return of asset 1 is increased by 1.5%, which corresponds to an increase 

of 0.1 in its Sharpe ratio.  

 

Figure 3 shows that the MVO optimal portfolio is highly sensitive to changes in expected returns 

and correlation coefficients. Recall that the increase in expected return of Asset 1 is only 0.15%, 

which corresponds to an increase of 0.01 in its Sharpe ratio with a volatility of 15%. This minor 

change is sufficient to create arbitrage positions in Asset 1 and Asset 2 when their correlation 

coefficient becomes larger than 80%. A correlation coefficient higher than 80% is quite common 

within equity or fixed income assets.  

Table 11: MVO and RO for 3 Assets with identical risk-return characteristics

MVO RO

Asset 1 33.33% 33.33%

Asset 2 33.33% 33.33%

Asset 3 33.33% 33.33%
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 Figure 4 illustrates that RO, with a diagonal matrix of sample variance as the uncertainty matrix, 

is less sensitive to the estimation errors in the expected returns compared to the MVO process, 

even when the correlation coefficient becomes extremely high. There is no large long-short 

arbitrage position created between Asset 1 and Asset 2. From this example, we also show that RO, 

with a diagonal matrix of sample variance as the uncertainty matrix, is more suitable in defining 

the strategic asset allocation than MVO. 

IV. Conclusion 

In this paper, we propose a new approach to calibrating the three important elements of a RO 

uncertainty set: the form of uncertainty set, the uncertainty matrix as well as the level of uncertainty 

in quadratic uncertainty set. Previously, RO literature tends to treat them as standalone parameters. 

The form of uncertainty set and the uncertainty matrix are chosen rather arbitrarily. The level of 

uncertainty is determined from a solely probabilistic or statistical point of view. In this paper, we 

consider the choice of these three elements as an integrated part of the optimization process. To 

our knowledge, we are the first to use such a calibration philosophy in the RO literature. 

In the first subsection of section II, We discuss the choice of the form of uncertainty set by deriving 

the robust counterparts of MVO for both box and quadratic uncertainty sets and advocate for the 

use of quadratic uncertainty set. Then, we show that there are two sources of the sensitivity of 

MVO to inputs: the inversion of small eigenvalues and the non-negligible expected returns given 

to the eigenvectors associated with these small eigenvalues. From the two formulations of the 

optimality condition of RO, we propose two ways that RO, with carefully chosen uncertainty 

matrices as the uncertainty set and the level of uncertainty, could overcome the shortcomings of 

MVO, namely, eliminating small eigenvalues and reducing significantly the expected returns given 

to the associated eigenvectors. Next, we review four main uncertainty matrices proposed in the 
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RO literature. We find that the diagonal matrix of sample variances provides the best trade-off 

between reduction of the sensitivity of an MVO solution and keeping volatilities unchanged. We 

derive a relationship between the L2 Norm of the Sharpe ratios and the level of uncertainty, κ, 

from the optimality condition of RO. We yield the upper bound limit of κ relying on this 

relationship. We obtain a rule of thumb for the calibration of κ in terms of the average of Sharpe 

ratios in a multi-asset investment universe including major asset classes. In fact, if κ is set to half 

of the average of Sharpe ratios, it can neutralize the returns of eigenvectors that correspond to 40% 

smallest eigenvalues. We use examples with the proposed parametrization to show that robust 

optimization efficiently overcomes the weaknesses of mean-variance optimisation and can be 

applied in real investment problems like multi-asset portfolio management or robo-advising. 

Thus, we bring RO from theory to application; we provide guidance in the determination of the 

characteristics of a RO uncertainty set in a multi-asset environment, which allows RO to be applied 

directly in real-life portfolio construction problems. The scope of application for RO is extended 

considerably with the rise of robo-advisors in the finance industry. Indeed, to build automated 

robo-advisors, one needs a portfolio optimization algorithm that creates, without human 

intervention, well-balanced portfolios that are not highly sensitive to changes in expected return 

forecasts. From what we argued in this article, RO is clearly a better candidate for endorsing the 

role of portfolio optimizer in a robo-advisor than MVO.  
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APPENDIX A 

In this appendix, we show that eliminating the small eigenvalues is equivalent to reducing the 

Frobenius norm of the correlation matrix. Reducing the Frobenius norm is equivalent to shrinking 

the correlation coefficients towards zero. 

To understand this, note that it is not the absolute magnitude but the relative magnitude of these 

eigenvalues that would determine the stability of the solution and its sensibility with respect to the 

estimated Sharpe ratios and correlation matrix. The relative magnitude of eigenvalues is captured 

by the 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 = √
𝛽𝑚𝑎𝑥

𝛽𝑚𝑖𝑛
 (Belsley, Kuh, and Welsch 1980) with 𝛽𝑚𝑎𝑥  being the 

maximum eigenvalue of P and 𝛽𝑚𝑖𝑛  being the minimum eigenvalue, or by the variance of 

eigenvalues. The more dispersed the eigenvalues, the more sensitive to the inputs the MVO 

solution is.  

In the case of two assets, the link between eigenvalues and the correlation coefficient is 

straightforwardly given by the following formula:  

𝛽 = 1 ±  𝜌       (Equation 1.36) 

With 𝛽  being the eigenvalues and 𝜌  being the correlation coefficient. Note that when |𝜌|  ⟶

1, the condition number⟶ +∞, the variance of eigenvalues ⟶ 2 (the maximum) and the solution 

becomes less stable or even unsolvable. For  𝑛 ≥ 5, calculating eigenvalues directly requires 

solving a fifth degree polynomial. The Abel–Ruffini theorem states that there is no algebraic 

expression for a general fifth degree polynomial; therefore, there is no analytical solution for the 

eigenvalues. However, the Frobenius norm could be computed to get to the bottom of the 
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relationship between correlation coefficients and the relative magnitude of eigenvalues for a matrix 

of dimension higher than 5.  

In fact, the Frobenius norm of a correlation matrix 𝑃 of 𝑛 × 𝑛 dimension for n assets is given by 

the following formula: 

‖𝑷‖𝐹 =  √𝑡𝑟𝑎𝑐𝑒(𝑷𝑇𝑷) =  √𝑛 + 2 ∗ ∑ ∑ 𝜌𝑖𝑗
2𝑛

𝑗=𝑖+1
𝑛−1
𝑖=1      (Equation 1.37) 

With 𝜌𝑖𝑗 being the correlation coefficient between asset i and asset j. Given that 𝜌𝑖𝑗 ranges from -

1 to 1, then the Frobenius norm of a correlation matrix attains its maximum 𝑛 when 𝜌𝑖𝑗 =  ±1 and 

its minimum √𝑛 when 𝜌𝑖𝑗 =  0,  for all 𝑖, 𝑗 = 1, ⋯ , 𝑛 𝑎𝑛𝑑 𝑖 ≠ 𝑗.  So, the Frobenius norm of a 

correlation matrix with 𝑛 ∗ 𝑛 dimension ranges from √𝑛 to 𝑛. Eigenvalue decomposition provides 

another expression for the Frobenius norm:  

‖𝑷‖𝐹 =  √𝑡𝑟𝑎𝑐𝑒(𝑷𝑇𝑷) =  √∑ 𝛽𝑖
2𝑛

𝑖=1     (Equation 1.38) 

With 𝛽𝑖 being eigenvalues. 

Recall that the variance of the eigenvalues is given by: 𝑣𝑎𝑟(𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠) =  
1

𝑛
(∑ 𝛽𝑖

2𝑛
𝑖=1 − 𝑛) 

and the squared L2 Norm of the correlation coefficient is given by ‖𝜌‖2
2 =  2 ∗ ∑ ∑ 𝜌𝑖𝑗

2𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1  

and from the equality between the two formulas for the Frobenius norm, we have:  

√𝑛 + 2 ∗ ∑ ∑ 𝜌𝑖𝑗
2𝑛

𝑗=𝑖+1
𝑛−1
𝑖=1 =  √∑ 𝛽𝑖

2𝑛
𝑖=1    (Equation 1.39) 

By squaring both sides of Equation 1.39, we get: 

∑ 𝛽𝑖
2𝑛

𝑖=1 − 𝑛 =  2 ∗ ∑ ∑ 𝜌𝑖𝑗
2𝑛

𝑗=𝑖+1
𝑛−1
𝑖=1       (Equation 1.40) 

Note that 𝑣𝑎𝑟(𝛽) =
1

𝑛
∑ 𝛽𝑖

2𝑛
𝑖=1 − 𝑛 and ‖𝜌‖2

2 =  ∑ ∑ 𝜌𝑖𝑗
2𝑛

𝑗=𝑖+1
𝑛−1
𝑖=1 , Equation 1.40 is actually: 

𝑣𝑎𝑟(𝛽) =  
2

𝑛
‖𝜌‖2

2     (Equation 1.41) 

When 𝜌𝑖𝑗 =  ±1 for all 𝑖, 𝑗 = 1, ⋯ , 𝑛 𝑎𝑛𝑑 𝑖 ≠ 𝑗, the Frobenius norm attains its maximum and this 

corresponds to the largest relative magnitude among all the eigenvalues. In this case, the 

eigenvalues would be 𝑛 for the first one and 0 for the rest of 𝑛 − 1 eigenvalues when they are 

arranged from the largest to the smallest, the condition number for this correlation structure is 

infinite and the variance of eigenvalues also attains its maximum: 𝑛 − 1. This correlation structure 

is the worst case for mean-variance optimization given that there is not even a solution. The more 

𝜌𝑖𝑗 approaches ±1 for all 𝑖, 𝑗 = 1, ⋯ , 𝑛 𝑎𝑛𝑑 𝑖 ≠ 𝑗, the more dispersed the eigenvalues, measured 

by condition number and variance, are.  
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When 𝜌𝑖𝑗 = 0 for all𝑖, 𝑗 = 1, ⋯ , 𝑛 𝑎𝑛𝑑 𝑖 ≠ 𝑗, the Frobenius norm attains its minimum and this 

corresponds to the smallest possible condition number, which equals 1, and to the lowest possible 

variance of eigenvalues which equals 0. In this case, the eigenvalues would all be equal to 1. This 

correlation structure is the best case for mean-variance optimization in terms of stability.  

In this way, we demonstrate the equivalence among improving stability, reducing the Frobenius 

norm and shrinking correlation coefficients towards zero.  

APPENDIX B 

In this appendix, we derive the upper limit of the L2 Norm of Sharpe ratios used in the RO in terms 

of the “returns” on the eigenvectors of the correlation matrix. Recall that the Sharpe ratio used for 

the RO is written as follows:  

𝑺𝑹 =  𝑺𝑹̅̅ ̅̅ −  
𝜅

‖𝑿‖2
𝑿    (Equation 1.42) 

Applying the change of basis according to the coordinate defined by the eigenvectors 𝒁 of the 

correlation matrix 𝐏, we get: 

𝒁𝑇𝑺𝑹 = 𝒁𝑇𝑺𝑹̅̅ ̅̅ −  
𝜅

‖𝒁𝑇𝑿‖
2

𝒁𝑇𝑿    (Equation 1.43) 

𝑺�̈� =  𝑺𝑹̅̅ ̅̈̅ −  𝜅
�̈�

‖�̈�‖
2

       (Equation 1.44) 

Note that 𝒁𝑇𝑺𝑹 can be viewed as the “return” of the eigenvectors. Again, the exact solution for 𝜅 

is not feasible because the above equation involves �̈�, which is the solution of the RO itself. 

However, it is important to note that 𝜅 should be chosen so that the “returns” of the eigenvectors 

that correspond to the small eigenvalues could be reduced. Following this guideline, we consider 

the two terms on the right-hand side of the above equation separately by taking the L2 Norm. 

 ‖𝑺𝑹̅̅ ̅̈̅ ‖
2

=  √𝑺𝑹̅̅ ̅̈̅ 𝑇𝑺𝑹̅̅ ̅̈̅ = √𝑆𝑅̅̅̅̈̅
1
2 +  𝑆𝑅̅̅̅̈̅

2
2+ . . . +𝑆𝑅̅̅̅̈̅

𝑛
2     (Equation 1.44) 

The 𝑆𝑅̅̅̅̈̅
𝑖
2, 𝑓𝑜𝑟 𝑖 = 1 ⋯ 𝑛, follow the order of eigenvalues, for instance, the last 𝑆𝑅̅̅̅̈̅

𝑛
2 corresponds to 

the “return” of the eigenvector that corresponds to the smallest eigenvalue.  

‖𝜅
�̈�

‖�̈�‖
2

‖
2

= 𝜅    (Equation 1.45) 

We take the L2 Norm on both side of equation 1.45 as follows:  

‖𝑺�̈�‖
2

=  ‖𝑺𝑹̅̅ ̅̈̅ −  𝜅
�̈�

‖�̈�‖
2

 ‖
2

=  √𝑺𝑹̅̅ ̅̈̅ 𝑇𝑺𝑹̅̅ ̅̈̅ +  𝜅𝟐 − 2 ∗ 𝜅
𝑺𝑹̅̅ ̅̈̅ 𝑻�̈�

‖�̈�‖
2

     (Equation 1.46) 
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Recall that the optimality condition of the RO mentioned earlier is written as: 

(
𝜅

√𝑿𝑇𝑿
 𝑰𝑛 +  𝐏) 𝑿 = 𝑺𝑹 ̅̅ ̅̅̅      (Equation 1.47) 

Multiplying both sides of equation 1.47 by 𝑿𝑇, we get 

𝜅√𝑿𝑇𝑿 +  𝑿𝑇𝐏𝑿 = 𝑿𝑇𝑺𝑹 ̅̅ ̅̅̅     (Equation 1.48) 

Expressing both sides in the space spanned by the eigenvectors, our calculations could read as 

follows:  

𝜅√�̈�𝑇�̈� + �̈�𝑇𝐏�̈� =  𝑺𝑹̅̅ ̅̈̅ 𝑻�̈�     (Equation 1.49) 

Diving both sides by √�̈�𝑇�̈� =  ‖�̈�‖
2
, the equivalent to the previous equation is given by: 

𝜅 +  
�̈�𝑇𝐏�̈�

‖�̈�‖
2

=  
𝑺𝑹̅̅ ̅̈̅ 𝑻�̈�

‖�̈�‖
2

       (Equation 1.50) 

As �̈�𝑇𝐏�̈� ≥ 0 and ‖�̈�‖
2

> 0, the optimality condition gives rise to the following inequality: 

𝜅 ≤  
𝑺𝑹̅̅ ̅̈̅ 𝑻�̈�

‖�̈�‖
2

      (Equation 1.51) 

The inequality just derived can be used to yield an upper limit of ‖𝑺�̈�‖
2
: 

‖𝑺�̈�‖
2

=  √𝑺𝑹̅̅ ̅̈̅ 𝑇𝑺𝑹̅̅ ̅̈̅ +  𝜅𝟐 − 2 ∗ 𝜅
𝑺𝑹̅̅ ̅̈̅ 𝑻�̈�

‖�̈�‖
2

≤  √𝑺𝑹̅̅ ̅̈̅ 𝑇𝑺𝑹̅̅ ̅̈̅ − 𝜅𝟐      (Equation 1.52) 

End of proof.  

APPENDIX C 

The asset classes used in the simulation application for calibrating 𝜅, as well as their Bloomberg 

tickers and their long term Sharpe ratios.  

To stay as objective as possible, we prefer using Ilmanen ((2012), page 25, 44 and 48) as the source 

of long term Sharpe ratio. When the data for Non-US assets do not exist, we take the Sharpe ratio 

of the equivalent US assets. The Bloomberg tickers chosen are also in line with Ilmanen (2012). 
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Correlation matrix used in the simulation application for calibrating 𝜅. The correlation matrix is 

estimated with Pearson estimator using the full sample net total returns in EUR from 2003 to 2019. 

  

 

Table 12: Indices Used for Calibrating κ and Robustness Test

Asset Class Name Bloomberg Ticker Long Term Sharpe Ratio

Equity Europe EMU NDDLEURO Index 0.39

Equity Europe EMU Small Cap NCLDEMU Index 0.39

Equity Europe UK NDDLUK Index 0.29

Equity North America USA NDDUUS Index 0.37

Equity North America USA Small Cap RU20INTR Index 0.37

Equity Pacific Japan NDDLJN Index 0.28

Equity Emerging Global NDUEEGF Index 0.39

Bond EUR Sovereign LEATTREU Index 0.66

Bond EUR Inflation Linked BCEE1T Index 0.66

Bond EUR Investment Grade LECPTREU Index 0.84

Bond EUR High Yield LF88TREU Index 0.50

Bond USD Sovereign LUATTRUU Index 0.66

Bond USD Inflation Linked BCIT1T Index 0.66

Bond USD Investment Grade LUACTRUU Index 0.84

Bond USD High Yield LF89TRUU Index 0.50

Bond JPY Sovereign G0Y0 Index 0.61

Bond Emerging Market Hard Currency Sovereign Global JPGCCOMP Index 0.58

Bond Emerging Market Local Currency Sovereign Global JGENVUUG Index 0.58

Real Estate Pan Europe TRNHUE Index 0.36

Real Estate USA TRNUSU Index 0.36

Real Estate Asia Pacific TRNHPU Index 0.36

Commodity Global BCOMXAL Index 0.13

Cash EUR DBDCONIA Index 0.00

Table 13: Correlation Matrix for Calibrating κ and Robustness Test

Equity Europe EMU 100%

Equity Europe EMU Small Cap 88% 100%

Equity Europe UK 81% 75% 100%

Equity North America USA 64% 56% 70% 100%

Equity North America USA Small Cap 57% 57% 60% 87% 100%

Equity Pacific Japan 44% 45% 54% 59% 52% 100%

Equity Emerging Global 66% 69% 67% 57% 53% 54% 100%

Bond EUR Sovereign -5% -6% -5% -5% -13% 3% -2% 100%

Bond EUR Inflation Linked 18% 16% 16% 7% 2% 14% 21% 78% 100%

Bond EUR Investment Grade 26% 29% 35% 24% 13% 24% 31% 68% 70% 100%

Bond EUR High Yield 70% 71% 64% 42% 39% 33% 54% 5% 30% 56% 100%

Bond USD Sovereign -21% -23% -3% 26% 15% 26% -7% 35% 11% 16% -30% 100%

Bond USD Inflation Linked -15% -16% 5% 29% 18% 31% 5% 36% 25% 27% -20% 93% 100%

Bond USD Investment Grade -1% -1% 19% 43% 29% 38% 13% 37% 21% 39% 0% 93% 91% 100%

Bond USD High Yield 32% 30% 48% 70% 59% 51% 37% 7% 11% 35% 39% 62% 64% 80% 100%

Bond JPY Sovereign -39% -33% -25% -5% -11% 6% -16% 32% 11% 10% -38% 69% 67% 59% 28% 100%

Bond Emerging Market Hard Currency Sovereign Global 20% 17% 36% 51% 37% 45% 37% 36% 32% 47% 25% 71% 75% 85% 83% 41% 100%

Bond Emerging Market Local Currency Sovereign Global 33% 33% 43% 42% 33% 42% 65% 24% 30% 39% 32% 26% 34% 40% 49% 15% 67% 100%

Real Estate Pan Europe 64% 68% 66% 48% 47% 38% 51% 23% 39% 46% 58% -1% 7% 17% 35% -13% 34% 37% 100%

Real Estate USA 34% 31% 41% 63% 63% 39% 37% 22% 29% 33% 32% 34% 40% 46% 57% 16% 55% 43% 57% 100%

Real Estate Asia Pacific 49% 51% 59% 53% 46% 65% 75% 17% 27% 40% 47% 11% 22% 29% 43% 3% 47% 60% 55% 54% 100%

Commodity Global 19% 22% 41% 26% 27% 25% 40% -12% 9% 10% 17% -1% 14% 9% 24% -6% 16% 20% 15% 12% 29% 100%

Cash EUR 12% 16% 6% -1% 2% 6% 8% -3% 4% -7% 6% -10% -9% -11% -8% -11% -8% -8% 15% 1% 7% 4% 100%
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Appendix D 

The results of example in III.B with an increase of 1.5% in expected return of Asset 1. From Figure 

5, we observe that an increase of 1.5% in expected creates arbitrage positions in Asset 1 and Asset 

2 when their correlation coefficient becomes larger than 20%. The threshold in correlation 

coefficient to create arbitrage positions is likely to be reduced with larger estimation errors is 

reduced from 80% to 20% when the increase changes from 0.15% to 1.5%. 

 

Figure 6 shows the result with RO. Note that due to the increase of 1.5% in expected return of Asset 1, RO 

optimal portfolios allocate more weights to asset 1. However, the weights are quite stable even when the 

correlation coefficients vary.  

 

 


