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Abstract: This paper introduces a comprehensive framework to make portfolio optimization fully 

transparent and explainable in the context of tactical asset allocation. The method breaks down the 

optimized multi‑asset portfolio into a sum of intuitive sub‑portfolios, each capturing a distinct 

driver of the final allocation. Specifically, the decomposition separates the contributions from: (i) 

a sub‑portfolio that replicates the strategic allocation using the available funds, accounting for 

mismatches between the investable universe and the indices used for the strategic asset allocation; 

(ii) sub‑portfolios with the tilts expressing the tactical allocation views; (iii) a sub‑portfolio with 

tilts arising from expected fund alphas, net of fees; (iv) a set of sub‑portfolios quantifying the 

impact of binding constraints; and (v) a funding sub-portfolio with the adjustment to ensure full 

investment. We introduce additional practical refinements to enhance the interpretability, 

robustness, and practical usability of the decomposition. These include a more intuitive 

normalization of the sub‑portfolios and mechanisms for redistributing extreme constraint effects. 
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I. Introduction 
 

The construction of tactical asset allocation (TAA) portfolios in institutional investment practice 

presents a host of practical challenges that are often under-appreciated in academic literature. 

While strategic asset allocation (SAA) and TAA views are typically formulated in terms of 

traditional core indices representing broad asset classes, the actual implementation of TAA must 

be carried out using investment funds, often using a mix of active and passive funds. Not only may 

these funds have benchmarks that differ from the indices used for SAA and TAA views, but active 

funds also introduce additional sources of alpha and idiosyncratic risk. This mismatch between the 

benchmarks used to express investment views and evaluate performance, and the actual investable 

universe, complicates the translation of allocation decisions into portfolios that are not only 

implementable and robust, but also transparent and faithful to the original investment views. 

Further complicating matters, TAA portfolios must adhere to a range of constraints, such as 

restrictions on leverage and short positions, as well as the requirement to remain fully invested. 

Additional complexity arises because investment views are usually not internally consistent with 

the correlation structures assumed in risk models, rendering traditional mean-variance 

optimization (MVO) approaches ineffective or even unusable for TAA construction. Moreover, 

tactical views are frequently difficult to express as precise numerical expected returns and may not 

be available for all assets in the investable universe. These realities underscore the need for 

portfolio construction frameworks that are robust to estimation errors and portfolio constraints, 

and that can accommodate incomplete, qualitative, or inconsistent investment views in a 

transparent and explainable manner. 

In response to these challenges, this paper introduces a framework that brings full transparency to 

the portfolio optimization process by enabling an explicit attribution of each fund’s allocation in 

the TAA portfolio to its underlying determinants: the SAA used for performance evaluation, the 

tactical investment views, the expected fund alphas adjusted for ongoing costs, and the binding 

constraints. We propose a rigorous analytical framework and provide linear decompositions that 

allow practitioners to systematically trace and interpret the origin of each weight in the final 

constrained TAA portfolio. Having detailed step-by-step explanations of how the optimizer 

operates and, specifically, how it constructs each portfolio weight from these building blocks, is 

crucial for establishing trust in the optimizer, especially among stakeholders with lower appetite 

for quantitative methods.  

Beyond transparency, the proposed framework provides clear and tangible evidence of the notion 

of value for money. By decomposing each allocation into economically interpretable components 

and linking them to realized constraints and costs, the framework shows how client value is created 

(or eroded) at the margin, thereby offering verifiable proof of value for money in terms both of 

design and of explanation. This strengthens accountability and enables portfolio managers to 

clearly articulate and rigorously justify portfolio outcomes to stakeholders, regulators, and clients. 
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We begin by recalling the derivation of the basic framework in the context of MVO. We then 

extend the application of the framework to the case of robust portfolio optimization (RPO). 

Building on the foundational work of Lobo et al. (1998) and Ben-Tal and Nemirovski (1998), RPO 

addresses the issue of estimation error in portfolio inputs by seeking allocations that remain 

effective under worst-case deviations. Subsequent developments, including the two-step max–min 

formulation of Tütüncü and König (2004), the quadratic error structure of Ceria and Stubbs (2006), 

and the proportional error-covariance approach of Scherer (2006), have further enhanced the 

tractability and interpretability of robust solutions. More recently, Heckel et al. (2016) 

demonstrated across a variety of (RPO) formulations that, as uncertainty in expected returns 

increases, robust portfolios interpolate between the mean-variance optimal allocation and various 

risk-based allocations, with the specific risk-based approach depending on the RPO formulation 

used. 

Recent contributions by Issaoui et al. (2021) have adapted RPO frameworks to the realities of SAA 

and TAA, providing practical guidelines for uncertainty calibration and the integration of 

qualitative investment views. These frameworks have been further extended by Somefun et al. 

(2022) to accommodate core-satellite portfolio approaches and thematic investments, and by 

Mallouli et al. (2025) to the construction of TAA portfolios using active and passive funds while 

accounting for ongoing fund charges and tracking error constraints. However, none of these works 

provides the analytical framework capable of decomposing the optimized portfolio into its 

underlying drivers, allowing each portfolio weight to be explained by contributions from the 

impact of the original tactical investment decisions, the expected fund alphas, the mismatch 

between core indices and funds used for implementation, and the myriad of portfolio constraints. 

The main contribution of this paper is to extend the linear decomposition of the constrained mean–

variance solution, where the optimized portfolio is expressed as the sum of the unconstrained 

solution and constraint‑specific corrections, to the RPO setting proposed by Issaoui et al. (2021), 

and further adapted by Mallouli et al. (2025) for allocations across active and passive funds. We 

show that the decomposition remains valid when the covariance matrix is replaced by its 

robustified counterpart and, crucially, when optimization is anchored on implied returns derived 

from an unconstrained tactical portfolio, thereby accommodating qualitative TAA views. This 

extension renders state‑of‑the‑art robust TAA optimization fully transparent and explainable. 

We develop the decomposition in several stages from theory to practical use cases: first, we 

recapitulate the linear decomposition for MVO with constraints; next, we generalize this result to 

RPO, introducing the robustified covariance matrix; then, we extend the framework to the practical 

case where the optimization is based on implied returns derived from an unconstrained tactical 

portfolio built from a selection of qualitative tactical views on individual asset classes; we then 

address the case where the asset universe is split between investable and non-investable assets, 

reflecting the realities of implementation using funds which do not necessarily match the core 

indices used for SAA and TAA investment views; and finally, we propose the decomposition of 

the weights of the TAA portfolio into contributions from an SAA replication, the investments 
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views, and the different portfolio constraints including the funding constraint, constraints on the 

maximum and minimum weights of funds in the final portfolio, and other typical linear constraints, 

e.g., on environmental, social and governance (ESG) scores.  

We further refine the framework to enhance its practical utility, showing how to include a more 

useful normalization of contributions and to explicitly separate the contributions from investment 

views into contributions from tactical views and from expected fund alphas. Finally, we propose 

an enhancement of the approach showing how to dispatch the sub-portfolios from maximum and 

minimum weight constraints back to their underlying sources, which is useful when these 

constraints merely offset large unconstrained tilts. This adjustment ensures that the decomposition 

remains interpretable even in the presence of strong offsetting effects, preserving transparency in 

cases where binding constraints would otherwise obscure the true drivers of the optimized 

allocation. 

In the Results section, we demonstrate the framework using a TAA case study benchmarked to an 

index‑based SAA. Using real‑world funds, we show how the optimized portfolio can be broken 

down into an exact sum of intuitive sub-portfolios, each reflecting a distinct investment rationale 

as described above. We also examine the impact of imposing a minimum allocation to Sustainable 

Investments, highlighting how the decomposition makes the constraint’s effect explicit while 

maintaining the transparency of the overall optimization process. 

By providing a transparent, robust, and analytically tractable decomposition of TAA portfolios, 

our framework bridges the gap between quantitative optimization and the practical demands of 

professional asset managers and investors. By applying it to the most advanced approaches to TAA 

portfolio optimization, it enables practitioners and investors to construct portfolios that are not 

only robust to estimation errors and portfolio constraints, but also fully explainable in terms of the 

underlying investment views and the constraints that drive their construction. 

II. Materials and methods 
 

Consider an investment universe A with 𝑛𝐴 financial assets divided into investable assets Ι, active 

and passive funds in our case, and non-investable assets N, i.e., core indices.  

In the remainder of this document, A denotes vectors and matrices spanning the full universe of 

financial assets, investable and non‑investable. All other vectors and matrices are restricted to 

investable assets only, i.e., the active and passive funds. 

Given the optimal portfolio allocation to active and passive funds, 𝒘TAA, the objective of this paper 

is to come up with a linear decomposition: 

𝒘TAA = ∑ 𝒘TAA,𝑖
𝑛𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎
𝑖=1            (1) 
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where each sub-portfolio 𝒘TAA,𝑖  captures the impact of each criterion i used in the portfolio 

construction problem. The sum of all sub-portfolios equals exactly the optimized portfolio 𝒘TAA. 

Hence, this decomposition should enable a transparent attribution of the final portfolio weights to 

the underlying criteria used.  

In our TAA problem, we start from a SAA portfolio defined on non-investable core indices, and 

we express tactical views on a subset of these indices, reflecting the convictions from an 

investment committee. However, the final TAA portfolio must be implemented using only funds 

from a pre-selected list of passive and active funds, where the active funds are chosen specifically 

for their expected positive alpha. Our objective here is to construct a TAA portfolio that faithfully 

integrates the SAA, the tactical views on core indices, the expected alphas of the selected funds, 

and the impact of all portfolio constraints, including weight bounds, linear constraints such as ESG 

score requirements, and the full-investment constraint.  

In Table 1, we summarize the type of output we seek. This table consolidates the results illustrated 

later in Table 7. For each fund, the final TAA portfolio weight is exactly decomposed into the sum 

of its weights across several sub‑portfolios: (i) replicating the SAA using the available funds (SAA 

Min TE); (ii) reflecting the tactical allocation views (Views); (iii) tilting towards funds with higher 

expected alpha after fees (Alpha); (iv) capturing the impact of constraints such as sustainability 

requirements (Constraints); and (v) ensuring that the final portfolio remains fully invested 

(Funding). In the sections that follow, we build this decomposition step by step, ultimately relying 

on an RPO framework. 

Table 1: Target output decomposition of a given TAA portfolio 

   
Notes: IG: Investment Grade. Sustainable Investment allocation is calculated from each fund’s minimum 

exposure in Table A2. The results are based on the example in Table 8. 

 

 

 

TAA SAA Min TE Views Alpha Constraints Funding

30% Minimum

Allocation to

Sustainable

Investments

Equity Europe Mid-large Active Fundamental 2.1% 2.7% 1.0% 1.5% -3.2% 0.1%

Equity Europe Mid-large Passive Index 25.9% 17.5% 6.2% -1.6% 3.8% 0.0%

Equity USA Growth Active Fundamental 6.4% 4.7% 0.0% 0.6% 0.7% 0.3%

Equity USA Mid-large Passive Index 4.8% 8.0% 0.0% -0.6% -2.3% -0.2%

Equity Japan Mid-large Active Fundamental 5.5% 4.7% 0.6% 0.6% -0.2% -0.2%

Equity Japan Mid-large Passive Index 6.1% 5.4% 0.7% -0.5% 0.7% -0.2%

Equity Emerging Mid-large Active Fundamental 4.4% 2.9% 0.9% 0.7% -0.1% 0.0%

Equity Emerging Mid-large Passive Index 5.4% 4.5% 1.6% -0.6% -0.2% 0.1%

Bonds Global Aggregate Active Fundamental 0.0% 18.4% -12.1% 0.6% -3.8% -3.1%

Bonds EUR IG Active Fundamental 0.0% 4.6% 0.0% 3.3% -6.8% -1.2%

Bonds EUR IG Passive Index 28.4% 11.3% 11.9% -3.6% 10.3% -1.5%

Bonds USD IG Passive Index 11.0% 15.4% -5.2% -0.4% 1.1% 0.2%

Portfolio Weight Sum 100.0% 100.0% 5.7% 0.0% 0.0% -5.7%

Portfolio Weights
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II.A. Linear decomposition of mean-variance optimization solution 

The MVO tactical active portfolio 𝒂 = 𝒘TAA − 𝒘SAA can be found by solving: 

max⁡
𝒂

(𝝁⊤𝒂 − 𝜆(𝒂⊤𝚺𝒂))         (2) 

with 𝝁⊤𝒂 the expected active return, √𝒂⊤𝚺𝒂 the tracking error and given 𝜆 > 0 the risk aversion. 

The unconstrained solution to (2) is well known and given by: 

𝒂(0) =
1

2𝜆
𝚺−1𝝁          (3) 

Now let us see the impact of adding multiple linear constraints: 

𝑩⊤𝒂 = 𝑏           (4) 

where 𝑩 is an 𝑛𝐴 × 𝑚 matrix with the constraint vectors in columns and 𝑏 is an 𝑚 vector with the 

required matching values.  

The zero-sum constraint arising from the fact that both 𝒘TAA  and 𝒘SAA  are fully invested 

portfolios can be written as one of such constraints by taking one column of 𝑩⁡to be 𝟏 (the 𝑛𝐴-

sized vector with all coefficients set to 1 and the corresponding 𝑏 = 0. Examples of constraints 

that fit this form include not only this zero-sum constraint, 𝟏⊤𝒂 = 0, but other typical constraints 

such as imposing country 𝒄⊤𝒂 = 0 or sector, 𝒔⊤𝒂 = 0, neutrality, or targeting a given active 

exposure on some characteristic 𝒒 of the underlying assets 𝒒⊤𝒂 = 𝑞0. 

With the vector of Lagrange multipliers 𝜹 = [𝛿1, … , 𝛿𝑚]⊤, the Lagrangian for all these constraints: 

ℒ(𝒂, 𝜹) = 𝝁⊤𝒂 − 𝜆𝒂⊤𝚺𝒂 − 𝜹⊤(𝑩⊤𝒂 − 𝒃)       (5) 

Applying first order conditions in 𝒂 results in: 

𝝁 − 2𝜆𝚺𝒂 − 𝑩𝜹 = 0          (6) 

which when solved for 𝒂 produces a linear decomposition of the portfolio into the sum of the 

unconstrained portfolio and terms with the Lagrange multipliers (Grinold and Khan (2000), Boyd 

and Vandenberghe (2004), Meucci (2005)): 

𝒂 =
1

2𝜆
𝚺−1(𝝁 − 𝑩𝜹)⁡ 

𝒂 = 𝒂(0) −
1

2𝜆
𝚺−1𝑩𝜹          (7) 

enforcing the constraints 𝑩⊤𝒂 = 𝒃: 

𝑩⊤𝒂(0) −
1

2𝜆
𝑩⊤𝚺−1𝑩𝜹 = 𝒃         (8) 
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and then solving for 𝜹 leads to: 

𝜹 = 2𝜆 (𝑩⊤𝚺−1𝑩)−1(𝑩⊤𝒂(0) − 𝒃)        (9) 

which when plugged back into (7) results in: 

𝒂⋆ = 𝒂(0) − 𝚺−1𝑩 (𝑩⊤𝚺−1𝑩)−1 (𝑩⊤𝒂(0) − 𝒃)      (10) 

If we write the constraint matrix in column format as a collection of vectors 𝑩 = [𝑩1, … , 𝑩𝑚] then 

𝑩⊤𝒂 = 𝒃 is equivalent to 𝑩𝑘
⊤𝒂 = 𝒃𝑘  and applying the Karush-Kuhn-Tucker (KKT) conditions 

allows us to re-write (7) as: 

𝒂⋆ = 𝒂(0) −
1

2𝜆
𝚺−1 ∑ 𝑩𝑘𝛿𝑘

𝑚
𝑘=1         (11) 

which is an explicit sum of the unconstrained portfolio and one correction term per constraint: 

𝒂⋆ = 𝒂(0) − ∑
1

2𝜆
𝚺−1𝑩𝑘𝛿𝑘

𝑚

𝑘=1
        (12) 

with the multipliers 𝛿𝑘 jointly determined by the linear equation: 

(𝑩⊤𝚺−1𝑩)𝜹 = 2𝜆(𝑩⊤𝒂(0) − 𝒃)        (13) 

In the Appendix C we extend the framework to include turnover penalties. 

II.B. Linear decomposition using robust portfolio optimization solution 

Here we repeat the exercise for the more general case of RPO formulated as (e.g. Ceria and Stubbs 

(2006)): 

max⁡
𝒂

(𝝁⊤𝒂   −   𝜆 𝒂⊤𝚺𝒂   −   𝜅√𝒂⊤𝛀𝒂)       (14) 

subject to constraints 𝑩⊤𝒂 = 𝒃 as before and where 𝛀 is the uncertainty matrix of returns and 𝜅 is 

the aversion to uncertainty in returns.  

Common choices for the uncertainty matrix include specifications proportional to the identity 

matrix, to a diagonal matrix built from estimated asset variances, or to the full variance–covariance 

matrix 𝚺. Heckel et al. (2016) analyzed the properties of the optimal solution to equation (14) 

under both low- and high-uncertainty regimes for these different forms of 𝛀. More recently, Yin 

et al. (2020) and Mallouli et al. (2025) provided theoretical background and empirical justification 

for why an uncertainty matrix proportional to the diagonal matrix of estimated asset variances is 

often the most appropriate choice for standard portfolio optimization problems. 

The presence of the square-root term makes the problem non-quadratic, so it is no longer possible 

to proceed as above. However, we can recover a similar algebraic structure by introducing one 

scalar auxiliary variable to make the problem quadratic again, with a modified covariance, 
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conditional on that scalar (Boyd and Vandenberghe (2004), and Ben‑Tal, El Ghaoui and 

Nemirovski (2009)).  

For that, we can use the identity which is valid for any 𝑞 ≥ 0:  

√𝑞 = min⁡
𝑡>0

(
𝑞

2𝑡
+

𝑡

2
)          (15) 

applying it to the uncertainty term: 

−𝜅√𝒂⊤𝛀𝒂 = max⁡
𝑡>0

[−
𝜅

2
(
𝒂⊤𝛀𝒂

𝑡
+ 𝑡)]        (16) 

Therefore, the RPO problem is equivalent to the joint maximization: 

max⁡
𝑎,  𝑡>0

     (𝝁⊤𝒂   −   𝜆 𝒂⊤𝚺𝒂   −   
𝜅

2𝑡
 𝒂⊤𝛀𝒂   −   

𝜅

2
 𝑡)      (17) 

subject to constraints 𝑩⊤𝒂 = 𝒃. At the optimum, 𝑡 will satisfy the condition 𝑡⋆ = √(𝒂⋆)⊤𝛀𝒂⋆.  

Because the gradient of −𝜆𝒂⊤Σ𝒂 is −2𝛾𝚺𝒂, and the gradient of −
𝜅

2𝑡
𝒂⊤𝛀𝒂 is −

𝜅

𝑡
𝛀𝒂, we can now 

introduce the modified variance covariance matrix defined for 𝑡 > 0: 

𝑸(𝑡)  =  2𝜆 𝚺   +   
𝜅

𝑡
 𝛀          (18) 

Then, dropping the constant −
𝜅

2
𝑡 with respect to 𝒂 in (17), the conditional problem becomes: 

max⁡
𝒂

(𝝁⊤𝒂 −
1

2
𝒂⊤𝑸(𝑡)⁡𝒂)         (19) 

subject to the constraints 𝑩⊤𝒂 = 𝒃. With this, we recover the same structure as for the original 

mean–variance constrained problem, but now with 𝚺 replaced by 𝑸(𝑡), up to a scaling. 

For a given fixed 𝑡 > 0, and applying first order constraints, the unconstrained robust portfolio 

satisfies: 

𝒂(0)(𝑡) = 𝑸(𝑡)−1𝝁          (20) 

and the solution that satisfies the constraints 𝑩⊤𝒂 = 𝒃 can be written in a form equivalent to (10): 

𝒂⋆(𝑡) = 𝒂(0)(𝑡) − 𝑸(𝑡)−1𝑩 (𝑩⊤𝑸(𝑡)−1𝑩)−1 (𝑩⊤𝒂(0)(𝑡) − 𝒃)    (21) 

As before, using the constraint matrix in column format 𝑩 = [𝑩1, … , 𝑩𝑚]  and the Lagrange 

multipliers 𝜹 = [𝛿1, … , 𝛿𝑚]⊤, we recover an equation equivalent to (12): 

𝒂⋆(𝑡) = 𝒂(0)(𝑡) − ∑ (𝑸(𝑡)−1𝑩𝑘𝛿𝑘(𝑡)) 
𝑚

𝑘=1
       (22) 
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with a similar linear decomposition as before but with 𝑸(𝑡) replacing 𝚺, up to a scaling, and with 

the multipliers 𝛿𝑘 now jointly determined by the linear equation: 

(𝑩⊤𝑸(𝑡)−1𝑩)𝜹 = (𝑩⊤𝒂(0) − 𝒃)         (23) 

In the Appendix C we show how to add turnover penalties to this framework. 

II.C. Linear decomposition when optimizing from tactical allocation implied returns 

Practitioners often anchor their process on a pre-defined TAA portfolio because even the 

unconstrained MVO solution based on expected returns is often highly sensitive to correlation 

estimates. Small changes in pair-wise correlations of asset returns can lead to extremely large 

changes in the overall allocations, and producing accurate enough expected returns is simply not 

possible. While RPO can reduce correlation sensitivity, it does not solve the deeper challenge of 

expressing views in the form of a numerical return forecast, particularly for assets outside the 

practitioner’s scope of analysis. Consequently, starting from a pre-selected unconstrained TAA 

portfolio often remains the preferred approach, even under RPO, as it provides a practical and 

robust foundation that reflects strategic convictions without requiring explicit return estimates for 

all assets. In such a case, optimization is still useful and required to change the portfolio so that it 

meets all required constraints.  

Issaoui et al. (2021) introduced a methodology for constructing unconstrained TAA portfolios 

based on the observation that investment committees (IC) across the industry typically express 

tactical views in terms of the anticipated direction and strength of bets for the assets under 

consideration: 

𝑺directional = (𝑆directional
1 , … , 𝑆directional

𝑛𝐴 )⊤       (24) 

A straightforward approach to constructing an unconstrained active TAA portfolio is to base 

allocations directly on the directional scores that reflect the views of the investment committee. 

Issaoui et al. (2021) proposes that such an unconstrained TAA portfolio assigns active weights 

according to a risk budgeting methodology, ensuring that each view is represented proportionally 

to its conviction and associated risk: 

𝒂(𝐼𝐶) = 𝑺directional × (𝑅𝐵 𝝈−1)        (25) 

where 𝝈 = (𝜎1, … , 𝜎𝑛𝐴
)⊤ is the vector of asset volatilities and 𝑅𝐵 denotes the total risk budget. 

This formulation ensures that each directional view allocates a portion of the portfolio’s tracking 

error proportional to its conviction and direction, according to: 

𝑅𝐵 ⋅ 𝑆𝑖 = 𝑎𝑖
𝐼𝐶 ⋅ 𝜎𝑖          (26) 

If, in Section II.A, we replace 𝝁  with the implied returns 𝝁̄ = 2𝜆𝚺𝒂(𝐼𝐶)  obtained from the 

unconstrained TAA portfolio in (25), then the first component, 𝒂(0), in equations (10) and (11) is 

essentially a scaled representation of the original TAA active portfolio 𝒂(𝐼𝐶). The second term 

introduces the deviations required to enforce the specified constraints. 

Conversely, in Section II.B, replacing 𝝁 with the pseudo-implied returns 𝝁̄ = 𝑸𝒂(𝐼𝐶), as suggested 

by Issaoui et al. (2021) and with 𝑸 defined in (18), leads to a similar interpretation in equations 

(21) and (22). The initial term again reflects a proportional version of the starting TAA portfolio, 
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while the subsequent correction term incorporates the necessary tilts to satisfy the imposed 

restrictions. 

II.D. Linear decomposition for practical application with tactical allocation to funds 

In practical applications, the TAA portfolio must be fully invested in a selection of passive and/or 

active funds, whereas both the SAA portfolio and the tactical investment views are typically 

formulated using a universe of standard core asset class indices, many of which may not be directly 

investable or may not even correspond exactly to the benchmarks of the selected funds. Moreover, 

the selection of active funds is typically carried out by a team that is independent from the 

investment committee. These funds are added to the investable universe based on their expected 

alpha, regardless of the tactical views expressed by the committee. As a result, the inclusion of 

active funds is driven by their potential to generate excess returns, rather than alignment with 

specific tactical positions. 

This context creates several challenges for portfolio construction. The first is managing the 

mismatch between the investable funds and the core indices used for SAA and investment views. 

In practice, the goal is to build a portfolio invested exclusively in funds that most faithfully 

represent the intended tactical views, while simultaneously satisfying all required constraints and 

controlling tracking error risk relative to the SAA portfolio. 

A second challenge is achieving the right balance between passive and active funds. This involves 

accounting for the expected alpha generated by active funds, net of ongoing costs, and weighing 

this against the expected excess returns implied by tactical investment views. Addressing this 

trade-off is essential for constructing a portfolio that considers both sources of potential 

outperformance. This issue was recently explored by Mallouli et al. (2025) in the context of RPO. 

Here, we adopt their formulation to show how the linear decomposition framework can be adapted 

to enhance transparency in a real-world fund allocation application. 

In particular, we emphasize the attribution of deviations in the final constrained TAA portfolio to 

four main sources: (i) the mismatch between the investable fund universe and the asset class 

indices used for both the SAA and to express tactical views; (ii) the actual tactical investment 

views, with a clear separation between contributions from tactical views and from active fund 

expected alpha; (iii) linear constraints, such as those imposing maximum and minimum allocations 

to each fund; and (iv) the funding constraint, which ensures that the TAA portfolio remains fully 

invested. 

Consider an investment universe of 𝑛𝑡𝑜𝑡 assets. Let 𝛮 be the subset of the non-investable assets, 

i.e., the asset class indices used for SAA and for expressing tactical investment views. Let 𝐼 be the 

subset of investable assets, which is the selection of investable funds, including active and passive 

funds. Let the 𝐴 exponent in vectors and matrices below refer to the full investment universe with 

all the 𝐼 investable assets and all the 𝛮 non-investable assets. Matrices and vectors below without 

this exponent span only the selected investable funds in 𝐼. 

With these definitions, let 𝒘SAA
𝐴 = [

𝒘SAA

𝟎
]  be a fully invested SAA portfolio that allocates only 

to non-investable assets, i.e., with zero allocation to the investable funds. The construction of a 

tactical portfolio 𝒘TAA
𝐴 = [

𝟎
𝒘TAA

], composed only of investable funds and with zero allocation to 
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all non-investable assets, and with 𝒂𝑨 = 𝒘TAA
𝐴 −𝒘SAA

𝐴 , can be formulated as the following RPO 

problem where: 

𝑚𝑎𝑥
𝒘TAA

𝐴
⁡(𝝁̅𝐴)⊤𝒂𝐴⁡ − 𝜆(𝒂𝐴⁡)⊤𝚺𝐴𝒂𝐴⁡ − 𝜅√(𝒂𝐴⁡)⊤𝛀𝐴𝒂𝐴⁡     (27)  

subject to the linear constraints: 

𝟏⊤𝒘TAA
𝐴 = 1⁡                                              (28) 

𝑤TAA,𝑖
𝐴 ≥⁡𝑤𝑚𝑖𝑛,𝑖

𝐴 ⁡, 𝑖 = 1, … , 𝑛𝐴        (29) 

𝑤TAA,𝑖
𝐴 ≤ 𝑤𝑚𝑎𝑥,𝑖

𝐴 ⁡, 𝑖 = 1, … , 𝑛𝐴        (30) 

𝑤TAA,𝑖
𝐴 = 0 if 𝑖 ∈ 𝛮          (31)                

(𝒘TAA
𝐴 )

⊤
𝑶𝐴,𝑗 ≥ 𝑂𝑚𝑖𝑛,𝑗

𝐴 ⁡, 𝑗 = 1,… , 𝑛𝐶        (32) 

(𝒘TAA
𝐴 )

⊤
𝑶𝐴,𝑗 ≤ 𝑂𝑚𝑎𝑥,𝑗

𝐴 ⁡, 𝑗 = 1,… ,𝑛𝐶        (33) 

where (28) is the funding constraint, (29) and (30) set the minimum 𝑤𝑚𝑖𝑛,𝑖
𝐴  and maximum and 

𝑤𝑚𝑎𝑥,𝑖
𝐴  weights allowed for the asset i, and (31) are the constraints that restrict the allocation of the 

portfolio to selected funds only. 𝑶𝐴,𝑗 is the vector with the asset values of a given characteristic j 

used to create linear constraints and  (𝒘TAA
𝐴 )

⊤
𝑶𝐴,𝑗

 represents the value of the portfolio for that 

characteristic while 𝑂𝑚𝑖𝑛,𝑗
𝐴  and 𝑂𝑚𝑎𝑥,𝑗

𝐴  in equations (32) and (33) are the maximum and minimum 

values, respectively, that bound the portfolio value. 

As proposed by Mallouli et al. (2025), the implied returns spanning all assets, 𝝁̅𝐴, are calculated 

so as to render the tactical active portfolio selected by the investment committee 𝒂(𝐼𝐶) efficient 

under (27) plus the independent expected fund alphas 𝜶𝑓𝑏 net of ongoing costs: 

𝝁̅𝐴 = ⁡2𝜆𝚺𝐴𝒂𝐴(𝐼𝐶) + ⁡𝜅
𝛀𝐴𝒂𝐴(𝐼𝐶)

√(𝒂𝐴(𝐼𝐶))
⊤
𝛀𝒂𝐴(𝐼𝐶)

+
1

𝛾
𝜶𝑓𝑏

𝐴       (34) 

where 𝒂𝐴(𝐼𝐶) = [𝒂
(𝐼𝐶)

𝟎
]  is a vector spanning all assets with the tactical portfolio from the 

investment committee, 𝜶𝑓𝑏
𝐴 = [

𝟎
𝜶𝑓𝑏

] is a vector spanning all assets with the expected net alphas 

for each fund relative to their respective benchmark, and 1/𝛾 can be interpreted as an overall 

confidence in the expected fund alphas. 

In the appendix we provide more information about the choice of covariance matrix 𝚺𝐴 and the 

uncertainty matrix 𝛀𝐴 spanning all non-investable assets in 𝛮 and all funds in 𝐼, as well as the 

choices of risk aversion 𝜆, aversion to uncertainty 𝜅 and confidence in fund alphas 𝛾. 

Since the weights of the non-investable assets in 𝒘TAA
𝐴  are set to zero, we can re-write (27) as: 

𝑚𝑎𝑥
𝒘TAA

⁡⁡⁡(𝝁̅ + 2𝜆𝚺𝐼
𝐴𝒘SAA

𝐴 )⊤𝒘TAA − 𝜆𝒘TAA
⊤ 𝚺𝒘TAA − 𝜅√(𝒂𝐴⁡)⊤𝛀𝐴𝒂𝐴⁡   (35) 

𝒘TAA
⊤𝟏 = 1                       (36) 
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𝑤TAA,𝑖 ≥ 𝑤𝑚𝑖𝑛,𝑖⁡, 𝑖 = 1, … , 𝑛𝐼                    (37) 

𝑤TAA,𝑖 ≤ 𝑤𝑚𝑎𝑥,𝑖⁡, 𝑖 = 1, … , 𝑛𝐼⁡                    (38) 

𝒘TAA
⊤𝑶𝑗 ≥ 𝑂𝑚𝑖𝑛,𝑗⁡, 𝑗 = 1,… , 𝑛𝐶                     (39) 

𝒘TAA
⊤𝑶𝒋 ≤ 𝑂𝑚𝑎𝑥,𝑗⁡, 𝑗 = 1, … , 𝑛𝐶                     (40) 

where 𝑛𝐼 is the number of funds in 𝐼. Note that the returns vector is 𝝁̅ + 2𝜆𝚺𝐼
𝐴𝒘SAA

𝐴  where 𝚺𝐼
𝐴 is the 

submatrix of 𝚺𝐴  obtained by removing the rows corresponding to non-investable assets. By 

refining the problem, we have added the term 2𝜆𝚺𝐼
𝐴𝒘SAA

𝐴  to the returns vector, which accounts for 

how well the investable assets track the SAA allocation.  

With 𝛀𝐼
𝐴 the submatrix of 𝛀𝐴 obtained by removing the rows corresponding to non-investable 

assets, and noting that 𝚺  is a positive definite symmetric matrix and 𝛀  is at least positive 

semidefinite and symmetric, the KKT theorem ensures the existence of a unique solution and 

provides the following conditions:  

• Stationarity:  

2𝜆𝚺𝒘TAA + ⁡𝜅
𝛀𝐼

𝐴𝒂𝐴⁡

√(𝒂𝐴⁡)
⊤
𝛀𝐴𝒂𝐴⁡

− 𝝁̅ − 2𝜆𝚺𝐼
𝐴𝒘SAA

𝐴 − 

∑ (𝛿𝑚𝑖𝑛,𝑖 − 𝛿𝑚𝑎𝑥,𝑖)
𝑛𝐼
𝑖=1 𝒆𝑖 − ∑ (𝜀𝑚𝑖𝑛,𝑗 −

𝑛𝑐
𝑗=1 𝜀𝑚𝑎𝑥,𝑗)𝑶

𝑗 + 𝛿𝑓𝑢𝑛𝑑𝑖𝑛𝑔𝟏 = 0     (42) 

where 𝛿𝑓𝑢𝑛𝑑𝑖𝑛𝑔 is the Lagrangian multiplier associated with the funding constraint (35), 

𝛿𝑚𝑖𝑛,𝑖  and 𝛿𝑚𝑎𝑥,𝑖  are the Lagrangian multipliers associated with the minimum and 

maximum constraints applied to fund i, and 𝒆𝑖  and is the vector with zero everywhere 

except for the fund i which equals 1. 𝜀𝑚𝑖𝑛,𝑗  and 𝜀𝑚𝑎𝑥,𝑗  are the Lagrangian multipliers 

associated with the linear constraint on 𝑶𝒋. 

 

• Primal feasibility:  

𝟏⊤𝒘TAA = 1,  

𝒘𝑚𝑖𝑛 ≤ 𝒘TAA ≤ 𝒘𝑚𝑎𝑥 ,  

𝑂𝑚𝑖𝑛,𝑗 ≤ 𝒘TAA
⊤𝑶𝑗 ≤ 𝑂𝑚𝑎𝑥,𝑗 for all 𝑗 = 1,… , 𝑛𝐶. 

 

• Dual feasibility:  
𝛿𝑚𝑖𝑛,𝑖 ≥ 0, 𝑖 = 1,… , 𝑛𝐼,  

𝛿𝑚𝑎𝑥,𝑖 ≥ 0, 𝑖 = 1, … , 𝑛𝐼, 

𝜀𝑚𝑖𝑛,𝑗 ≥ 0, 𝑗 = 1,… , 𝑛𝐶 , 

𝜀𝑚𝑎𝑥,𝑗 ≥ 0, 𝑗 = 1,… , 𝑛𝐶. 

 

• Complementary slackness: 

𝛿𝑚𝑎𝑥,𝑖(𝑤TAA,𝑖 − 𝑤𝑚𝑎𝑥,𝑖) = 0, 𝑖 = 1,… , 𝑛𝐼, 

𝛿𝑚𝑖𝑛,𝑖(𝑤TAA,𝑖 − 𝑤𝑚𝑖𝑛,𝑖) = 0, 𝑖 = 1,… , 𝑛𝐼, 

𝜀𝑚𝑖𝑛,𝑗(𝒘TAA
⊤𝑶𝑗 − 𝑂𝑚𝑖𝑛,𝑗) = 0, 𝑗 = 1,… , 𝑛𝐶 , 

𝜀𝑚𝑎𝑥,𝑗(𝒘TAA
⊤𝑶𝑗 − 𝑂𝑚𝑎𝑥,𝑗) = 0, 𝑗 = 1,… , 𝑛𝐶 . 
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By factoring the stationarity condition, we get:  

[2𝜆𝚺 + 𝜅
𝛀

√(𝒂𝐴⁡)
⊤
𝛀𝐴𝒂𝐴⁡

⁡] 𝒘TAA − ⁡𝜅
𝛀𝐼

𝐴𝒘𝑆𝐴𝐴
𝐴

√(𝒂𝐴⁡)
⊤
𝛀𝐴𝒂𝐴⁡

− 𝝁̅ − 2𝜆𝚺𝐼
𝐴𝒘SAA

𝐴 −  

∑ (𝛿𝑚𝑖𝑛,𝑖 − 𝛿𝑚𝑎𝑥,𝑖)
𝑛𝐼
𝑖=1 𝒆𝑖 − ∑ (𝜀𝑚𝑖𝑛,𝑗 −

𝑛𝑐
𝑗=1 𝜀𝑚𝑎𝑥,𝑗)𝑶

𝑗 + 𝛿𝑓𝑢𝑛𝑑𝑖𝑛𝑔𝟏 = 0  (43) 

If we reintroduce the matrix 𝑸𝐴 defined in (18): 

𝑸𝐴 = 2𝜆𝚺𝐴 + 𝜅
𝛀𝐴

√(𝒂𝐴⁡)
⊤
𝛀𝐴𝒂𝐴⁡

         (44) 

Note that this matrix depends on the optimized weights of 𝒘SAA
𝐴 , hence the stationarity condition 

cannot give a closed-form solution. Still, and with 𝑸𝐼
𝐴 the submatrix of 𝑸𝐴 obtained by removing 

the rows corresponding to non-investable assets, and with 𝑸 submatrix of 𝑸𝐴 with only columns 

and rows for the investable assets, then, by replacing (44) in (43), the optimal portfolio is: 

𝒘TAA = 𝑸−1 [𝝁̅ + 𝑸𝐼
𝐴𝒘SAA

𝐴 + ∑(𝛿𝑚𝑖𝑛,𝑖 − 𝛿𝑚𝑎𝑥,𝑖)

𝑛𝐼

𝑖=1

𝒆𝒊 + ∑(𝜀𝑚𝑖𝑛,𝑗 −

𝑛𝑐

𝑗=1

𝜀𝑚𝑎𝑥,𝑗)𝑶
𝑗 − 𝛿𝑓𝑢𝑛𝑑𝑖𝑛𝑔𝟏] 

(45) 

We thus recover the linear decomposition given in (22) for the example under consideration. 

II.E. Interpretation of the linear decomposition of a tactical allocation to funds 

Equation (45) allows us to decompose the allocation to funds in the 𝒘TAA into a sum of portfolios: 

𝒘TAA = 𝒘SAA⁡𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝒘𝑟𝑒𝑡𝑢𝑟𝑛𝑠 + 𝒘𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 + 𝒘𝑓𝑢𝑛𝑑𝑖𝑛𝑔    (46)                

By introducing the following definitions:  

𝒘SAA⁡𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑸−1𝑸𝐼
𝐴𝒘SAA

𝐴         (47) 

𝒘𝑟𝑒𝑡𝑢𝑟𝑛𝑠=⁡𝑸−1𝝁̅          (48) 

𝒘𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 = 𝑸−1[∑ (𝛿𝑚𝑖𝑛,𝑖 − 𝛿𝑚𝑎𝑥,𝑖)
𝑛𝐼
𝑖=1 𝒆𝒊 + ∑ (𝜀𝑚𝑖𝑛,𝑗 −

𝑛𝑐
𝑗=1 𝜀𝑚𝑎𝑥,𝑗)𝑶

𝑗]  (49) 

𝒘𝑓𝑢𝑛𝑑𝑖𝑛𝑔 = −𝑸−1𝛿𝑓𝑢𝑛𝑑𝑖𝑛𝑔𝟏         (50) 

𝒘SAA⁡𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛  can be interpreted as the minimum tracking error portfolio that replicates 

𝒘SAA
𝐴 ⁡constrained to invest only in funds and constructed under uncertainty, i.e., using this new 

matrix 𝑸 instead of the original full 𝚺. ⁡ 

𝒘𝑟𝑒𝑡𝑢𝑟𝑛𝑠 is the fully unconstrained portfolio that maximizes the Sharpe ratio based on the implied 

returns 𝝁̅ , with 𝑸  replacing the original full 𝚺 . This portfolio tilts away from the allocation 

𝒘SAA⁡𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛⁡to take advantage of the tactical investment views and alphas of the funds in 𝝁̅. 
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𝑸−1𝒆𝑖 is the minimum-variance portfolio that holds asset i with weight 1, and all other weights 

are chosen to minimize total variance (i.e., to hedge the risk of asset i as much as possible), while 

𝑸−1𝑶𝑗 is the minimum-variance portfolio that achieves a unit exposure to the characteristic 𝑶𝑗. 

In this way, 𝒘𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 is the sum of all such portfolios scaled to fulfil all max and min weight 

constraints and all other linear constraints on 𝑶𝑗. 

𝒘𝑓𝑢𝑛𝑑𝑖𝑛𝑔 is the fully unconstrained minimum variance portfolio scaled by  𝛿𝑓𝑢𝑛𝑑𝑖𝑛𝑔, added or 

removed so that the final portfolio will be forced to have weights adding to 1.  

II.F. Towards a more practical linear decomposition 

Equations (45) and (46) follow naturally from the framework in Sections II.A and II.B. However, 

it is possible to rearrange or regroup the terms in the decomposition, provided they still sum to the 

final allocation 𝒘TAA
𝐴 , if an alternative breakdown offers greater clarity or is better suited for 

interpreting the resulting portfolio. Here we propose some changes that, in our view, increase 

transparency. 

II.F.1 Minimum tracking error portfolio for SAA 

The first concerns the term 𝒘SAA⁡𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 defined in equation (47). This portfolio is invested in 

the available funds and seeks to replicate the SAA allocation to non-investable core indices but 

still optimized using the matrix 𝑸 rather than the original full covariance matrix 𝚺. However, as it 

is, this portfolio is not necessarily fully invested. Adding a constraint to ensure it becomes fully 

invested enhances the transparency of the decomposition by transforming it into a more standard 

minimum tracking error portfolio. To achieve this, we introduce the following new definition: 

𝒘SAA⁡𝑚𝑖𝑛𝑇𝐸 =⁡𝑸−1[𝑸𝐼
𝐴𝒘SAA

𝐴 + 𝛿min𝑇𝐸𝟏]  

𝒘SAA⁡𝑚𝑖𝑛𝑇𝐸 =⁡𝒘SAA⁡𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑸−1𝛿min𝑇𝐸𝟏      (51) 

with 𝒘SAA⁡𝑚𝑖𝑛𝑇𝐸 spanning only investable assets and with the Lagrangian: 

𝛿𝑚𝑖𝑛𝑇𝐸 =
1−(𝟏⊤𝑸−1𝑸𝐼

𝐴𝒘SAA
𝐴 )

𝟏⊤𝑸−1𝟏
         (52) 

If we replace 𝒘SAA⁡𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 with 𝒘SAA⁡𝑚𝑖𝑛𝑇𝐸 in decomposition (46), we must adjust the funding 

term in (50) by subtracting 𝑸−1𝛿min𝑇𝐸𝟏. This correction ensures that the overall sum remains 

consistent. The fully invested minimum tracking error portfolio serves as the new baseline for 

constructing the fund allocation in 𝒘TAA, while the remaining components in (46) introduce tilts 

that reflect investment views and constraints. 

II.F.2 Contributions from investment views towards the allocation  

Here we focus on how to change the term 𝒘𝑟𝑒𝑡𝑢𝑟𝑛𝑠 to render it more informative. This could be 

done in different ways depending on how investment views are formulated. In the example above 

where we use implied returns defined in (34), derived from a given unconstrained TAA active 

portfolio built from individual views on each asset class and corrected with the expected net alphas 

from funds, we can write those implied returns as: 

𝝁̅𝐴 =⁡𝑸𝐴𝒂𝐴(𝐼𝐶) +
1

𝛾
𝜶𝑓𝑏

𝐴          (53) 
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We can decompose the first term into a sum of individual views by splitting the portfolio 𝒂𝐴(𝐼𝐶) 

into a sum of the individual asset weights allocated to each non-investable asset:  

𝒂𝐴(𝐼𝐶) =

[
 
 
 
 
 
 
 
𝑎1

0
⋮
0
0
0
⋮
0 ]

 
 
 
 
 
 
 

 + 

[
 
 
 
 
 
 
 
0
𝑎2

⋮
0
0
0
⋮
0 ]

 
 
 
 
 
 
 

⁡+ … +⁡

[
 
 
 
 
 
 
 
0
0
⋮

𝑎𝑁

0
0
⋮
0 ]

 
 
 
 
 
 
 

        (54) 

which leads to: 

𝝁̅𝐴 =⁡∑ 𝝁̅
𝑣𝑖𝑒𝑤𝑠,𝑖
𝐴𝑛𝑁

𝑖=1 +
1

𝛾
𝜶𝑓𝑏

𝐴          (55) 

where 𝝁̅𝑣𝑖𝑒𝑤𝑠,𝑖
𝐴  are the implied returns for each asset in 𝛮 calculated from the matrix 𝑸 rather than 

the original full covariance matrix 𝚺, and derived from each individual allocation to non-investable 

assets 𝑖 in (54).  

Because the final allocation is not allowed to be invested in the non-investable assets in 𝛮, we can 

drop the rows for such assets in (55) and use the bottom of the vectors for investable assets in 𝐼 

only in (48) for 𝒘𝑟𝑒𝑡𝑢𝑟𝑛𝑠 allowing us to decompose this portfolio into a sum of portfolios: 

𝒘𝑟𝑒𝑡𝑢𝑟𝑛𝑠=⁡𝑸−1 ∑ 𝝁̅𝑣𝑖𝑒𝑤𝑠,𝑖
𝑛𝑁

𝑖=1  +⁡
1

𝛾
𝑸−1𝜶𝑓𝑏 

𝒘𝑟𝑒𝑡𝑢𝑟𝑛𝑠=⁡∑ 𝒘𝑣𝑖𝑒𝑤𝑠,𝑖
𝑛𝑁

𝑖=1  +⁡𝒘𝛼 ⁡=⁡𝒘𝑣𝑖𝑒𝑤𝑠 +⁡𝒘𝛼      (56) 

The first term in (56) represents a sum of portfolios composed exclusively of investable assets. 

Each portfolio is constructed to replicate the target allocation to each non-investable asset in (55), 

derived from the investment views. This term gives insight into how each view on a non-investable 

asset can be replicated using investable assets, with the replication constructed by minimizing 

tracking error measured using the matrix 𝑸 instead of the original full covariance matrix 𝚺. 

The second term, ⁡𝒘𝛼 , corresponds to the allocation to investable assets that is optimal in the 

absence of any investment views. It is determined solely by the expected alphas of investable 

assets, adjusted for ongoing costs. 

II.F.3 Normalization of contributions towards the allocation  

In the problem at hand, 𝒘TAA is also constrained to be fully invested, i.e. portfolio weights add to 

100%. 𝒘SAA⁡𝑚𝑖𝑛𝑇𝐸 is also fully invested. In the absence of other constraints and with 𝝁̅𝜶 = 𝟎, the 

weights in 𝒘𝑣𝑖𝑒𝑤𝑠  derived from the investment views have to be compensated by weights in 

𝒘𝑓𝑢𝑛𝑑𝑖𝑛𝑔 so as to meet the funding constraints, i.e. that the final weights of 𝒘TAA total 100%.  

In this setting, 𝒘TAA is constrained to be fully invested, meaning that the weights add to 100%. 

𝒘SAA⁡𝑚𝑖𝑛𝑇𝐸 is also fully invested. When no additional constraints are imposed, and with  𝜶𝑓𝑏 = 0, 
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the weights in  𝒘𝑣𝑖𝑒𝑤𝑠, derived from the investment views, must be offset by weights in 𝒘𝑓𝑢𝑛𝑑𝑖𝑛𝑔 

so that the final weights in 𝒘TAA sum to 100%. 

To generalize to non-zero 𝜶𝑓𝑏 and additional constraints, we introduce the definition of zero-sum 

portfolio 𝒘̂𝑗 associated with portfolio 𝒘𝑗: 

𝒘̂𝑗 = 𝒘𝑗 −
𝟏⊤𝒘𝑗

𝟏⊤𝒘𝑓𝑢𝑛𝑑𝑖𝑛𝑔
𝒘𝑓𝑢𝑛𝑑𝑖𝑛𝑔⁡⁡⁡⁡⁡        (57) 

where 𝟏⊤𝒘 is the sum of weights of 𝒘 and 𝟏⊤𝒘𝑓𝑢𝑛𝑑𝑖𝑛𝑔  the sum of weights of 𝒘𝑓𝑢𝑛𝑑𝑖𝑛𝑔. This 

definition will be useful below when formulating the final decomposition of  𝒘TAA in a form that 

makes each term in the decomposition more useful in enhancing the transparency of the final 

allocation obtained from the optimization problem. 

II.F.4 Decomposition with normalized portfolios 

With the definitions introduced above, it is useful to re-arrange the decomposition in (46) as: 

𝒘TAA = 𝒘SAA⁡𝑚𝑖𝑛𝑇𝐸 + 𝒘𝑣𝑖𝑒𝑤𝑠 + 𝒘̂𝛼 + 𝒘̂𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 + 𝒘̂𝑓𝑢𝑛𝑑𝑖𝑛𝑔    (58) 

Here, 𝒘SAA⁡𝑚𝑖𝑛𝑇𝐸 is fully invested, while 𝒘̂𝛼 and 𝒘̂𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 are zero-sum portfolios that adjust 

asset weights without affecting the total portfolio sum. The final term, 𝒘̂𝑓𝑢𝑛𝑑𝑖𝑛𝑔⁡ combines 

𝒘𝑓𝑢𝑛𝑑𝑖𝑛𝑔  as defined in (50) with the corrective term in (51), which accounts for replacing  

𝒘SAA⁡𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 with 𝒘SAA⁡𝑚𝑖𝑛𝑇𝐸, as well as all corrective terms in (51) arising from normalizing 

⁡𝒘𝛼 and 𝒘𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠. The sum of weights of the terms in (58) is summarized in Table 2. 

Table 2: TAA weights decomposed between relevant sub-portfolios. 

Portfolio SAA⁡𝑀𝑖𝑛⁡𝑇𝐸 𝑉𝑖𝑒𝑤𝑠 𝐴𝑙𝑝ℎ𝑎 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝐹𝑢𝑛𝑑𝑖𝑛𝑔 

Sum weights 100% x% 0 0 -x% 

 

The decomposition of the weights in (58) provides a clearer insight into the adjustments made by 

the optimizer to implement the investment views while satisfying the funding constraint, as we 

shall illustrate with the numerical examples. 

II.F.5 Dispatching offset contributions from weight constraints 

While equation (58) offers a clear decomposition of the optimized portfolio into contributions from 

SAA replication, investment views, alphas, constraints, and the funding adjustment, further 

refinements may be helpful in practice. This is especially relevant when the effect of a constraint 

nearly cancels out the impact of another effect with a large contribution, which can make it difficult 

to discern the true drivers of the final allocation. 

For example, consider a strong negative view on an asset that would, in the absence of constraints, 

result in a substantial negative weight. If a long-only constraint is imposed, then the corresponding 

sub-portfolio in (58) will very likely show a large positive weight on this same asset to bring it up 

to zero or higher, effectively neutralizing the intended effect of the view (Green and Hollifield 

(1992)). More generally, weight bounds and linear constraints can produce large contributions that 



18 

 

offset other effects, particularly when the unconstrained solution would otherwise significantly 

violate these bounds. 

When such offsetting occurs, the decomposition may be dominated by large, opposing terms, 

reducing its interpretability. If this arises because of individual constraints on the maximum and 

minimum value of weights, then it can be useful to refine the decomposition by reducing the 

number of sub-portfolios in (58) by redistributing at least some of these most extreme offsetting 

contributions back on the criteria that caused it in first place. For instance, one may reallocate the 

portion of the constraint sub-portfolio that neutralizes a view because it violates weight bounds 

back on the view itself. 

Here, we introduce a method for redistributing the impact of a given minimum or maximum 

constraint on asset weights by reallocating its offsetting effect to the most relevant sources of the 

allocation that violated it. This refinement ensures that the decomposition remains transparent and 

meaningful, even when binding constraints significantly alter the unconstrained solution.* 

Let 𝑫 be a matrix obtained from 𝒘̂𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠  by keeping only the 𝑛𝐷  columns that are to be 

dispatched onto the other sub-portfolios of (58). All columns of 𝑫 must be associated with a 

weight bound constraint and have at least one nonzero weight.  

Note that not all columns in 𝒘̂𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 with large values should be dispatched. If a sub-portfolio 

in 𝒘̂𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠  simply comes about because of a regulatory constraint or some other specific 

reason not related to replication of the SAA, views, alpha, or funding, then trying to dispatch may 

serve no purpose. 

Now, let 𝑹⁡be the concatenation into columns of all the 𝑛𝑅 sub-portfolios in (58) that have not 

been chosen for 𝑫. Stacking both 𝑹 and 𝑫 into columns of a matrix 𝑴: 

𝑴 = [𝑹|𝑫]           (59) 

The matrix 𝑴 has all the sub-portfolios in the decomposition (58) and thus verifies: 

𝑴𝟏𝑛𝑅+𝑛𝐷
=⁡𝒘TAA          (60) 

where 𝟏𝑛𝑅+𝑛𝐷
 is the vector of size 𝑛𝑅 + 𝑛𝐷 with all coefficients equal to 1. Our goal is to design 

a 𝑛𝐷 × 𝑛𝑅  matrix 𝑷 that will project the portfolios 𝑫 onto the same space as the 𝑹 portfolios, 

while staying relevant for the allocation explanation. We shall then compute a new 𝑛 × 𝑛𝑅 matrix 

𝑴̂ = 𝑹 + 𝑫𝑷 that will explain the optimizer choices using only the criteria that have been deemed 

relevant. Because we still want 𝑴̂ columns sum to equal 𝒘TAA, 𝑷 must verify: 

𝑷𝟏𝑛𝑅
=⁡𝟏𝑛𝐷

           (61) 

Recall that for all 𝑖, 𝛿𝑚𝑖𝑛,𝑖 ≥ 0 and 𝛿𝑚𝑎𝑥,𝑖 ≥ 0. Moreover, the complementary slackness condition 

implies that the only way for both these Lagrangian multipliers to be nonzero is 𝑤𝑚𝑖𝑛,𝑖 = 𝑤𝑚𝑎𝑥,𝑖, 

which happens when the i-th asset weight has been set to a given value prior to the optimization. 

There are three cases:  

 
* Jagannathan and Ma (2003) proposed a different approach to deal with the long only constraints, based on modifying 

the covariance matrix Σ in mean-variance optimization. However, we find their method less adapted for the purposes 

of this paper. 
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- If 𝛿𝑚𝑖𝑛,𝑖 > 𝛿𝑚𝑎𝑥,𝑖: the unconstrained weight for asset i wants to be below the minimum 

bound. The optimizer increases the asset’s effective return. The constraint pushes the 

weight upward.  

- If 𝛿𝑚𝑖𝑛,𝑖 < 𝛿𝑚𝑎𝑥,𝑖: the unconstrained weight for asset i wants to be above the maximum 

bound. The optimizer decreases the asset’s effective return. The constraint pushes the 

weight downwards. 
- If 𝛿𝑚𝑖𝑛,𝑖 = 𝛿𝑚𝑎𝑥,𝑖 : the constraint does not affect the optimizer and the column can be 

dropped. 

Based on these observations, the projection matrix 𝑷 should increase weights of assets for which 

𝛿𝑚𝑖𝑛,𝑖 > 𝛿𝑚𝑎𝑥,𝑖 and lower the weights if 𝛿𝑚𝑖𝑛,𝑖 < 𝛿𝑚𝑎𝑥,𝑖 in the relevant portfolios 𝑹. In both cases, 

𝑷 should push the weights of the concerned assets towards the bound imposed on the portfolio it 

must respect.  

Let the 𝑛𝐷 × (𝑛𝑅 + 𝑛𝐷) matrix 𝑨 be constructed row-by-row, where each row corresponds to an 

asset whose constraint‑related sub‑portfolio is being dispatched, i.e., the assets appearing in matrix 

𝑫. Its purpose is to encode how the weights of the constraint portfolios 𝑫 should be redistributed 

across all sub-portfolios, both 𝑹⁡and 𝑫, based on which constraints are binding and in which 

direction.  

For a given asset belonging to matrix 𝑫, we look at the corresponding row of 𝑴 and apply the 

following selection rules. For each asset 𝑖, we compare 𝛿min⁡,𝑖 for the min-weight constraint with 

the 𝛿max⁡,𝑖 for the max-weight constraint. Then,  

- For the case 𝛿min⁡,𝑖 > 𝛿max⁡,𝑖  we keep only the negative coefficients from row 𝑖  of 𝑴. 

These are the sub-portfolios that try to decrease the weight. 

- For the case 𝛿min⁡,𝑖 < 𝛿max⁡,𝑖 we keep only the positive coefficients from row 𝑖 of 𝑴. These 

are the sub-portfolios that try to increase the weight. 

- For the case 𝛿min⁡,𝑖 = 𝛿max⁡,𝑖 then column of 𝑫 can be ignored and is not used for 𝑨. We 

drop this row. 

After this, the 𝑨 rows with nonzero sums are then divided by their sums, while the coefficients of 

rows with zero sums are all set to 
1

𝑛𝑅+𝑛𝐷
, so that we have: 

𝑨 = [𝑨𝑅|𝑨𝐷]           (62) 

In this way, each row in 𝑨  is a vector of percentages, summing to 1, indicating how the 

corresponding asset in 𝑫 should be projected onto all the other columns of 𝑴 = [𝑹 ∣ 𝑫]. 

𝑨𝟏𝑛𝑅+𝑛𝐷
= 𝟏𝑛𝑅

          (63) 

Recall that multiplying 𝑫 by 𝑨 produces 𝑫𝑨 = [𝑫𝑨𝑅|𝑫𝑨𝐷]. This means that part of the weights 

in 𝑫 is dispatched to the relevant portfolios 𝑹 (through 𝑫𝑨𝑅), while another part is redistributed 

back into the constraint portfolios 𝑫 themselves (through 𝑫𝑨𝐷). Because 𝑫𝑨𝐷 feeds weights back 

into 𝑫, the redistribution process becomes recursive and each time weights loop back into 𝑫, they 

must again be projected onto 𝑹. 
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To fully dispatch all the weights from 𝑫 into 𝑹, we must therefore accumulate this entire recursive 

sequence 𝑫𝑨𝑅   +   𝑫𝑨𝐷𝑨𝑅   +   𝑫𝑨𝐷
2 𝑨𝑅   +    ⋯ . This infinite series has a closed-form solution, 

which leads us to define the projection matrix: 

𝑷 = (𝚰𝑛𝐷
− 𝑨𝐷)

−1
𝑨𝑅          (64) 

Here, 𝚰𝑛𝐷
is the identity matrix of size 𝑛𝐷. The inverse is well-defined because 𝑨𝑫

𝑘 → 0 as 𝑘 → ∞. 

This holds in practice since each row of 𝑨𝑫 contains percentages whose row-sum is strictly less 

than 1 as some weight has already been allocated to 𝑨𝑹.  

Finally, having calculated 𝑷, we can construct the new matrix 𝑴̂: 

𝑴̂ = 𝑹 + 𝑫𝑷           (65) 

Compared with the original decomposition 𝑴 in (58), the new matrix 𝑴̂ contains fewer columns, 

since the sub-portfolios in 𝑫  have now been dispatched onto the relevant components. Each 

column of 𝑴̂ represents a cleaner and more interpretable sub-portfolio. Together, these columns 

provide a redefined and more transparent breakdown of the final portfolio 𝒘TAA . They still 

correspond to the same drivers of the allocation (replication of the SAA, tactical views, fund 

alphas, the funding constraint, and any remaining constraints that were not dispatched) while 

removing the noise created by the offsetting constraint effects. 

III. Results 
 

In this section, we illustrate the implementation of the portfolio decomposition framework using 

as an example the construction of a TAA portfolio benchmarked against an SAA portfolio. The 

SAA allocates exclusively to core asset classes represented by core indices, while the TAA 

portfolio is implemented using a mix of active and passive funds. This setting represents the 

realities of portfolio management, where investment views tend to be formulated at the level of 

broad asset-class indices, but implementation uses a set of imperfectly aligned investable funds.  

All data sources and calculation details are documented in the Appendix. Table A1 lists the core 

indices used to construct the SAA portfolio and to define the TAA views. The table also reports 

the SAA allocation itself, as well as the target active unconstrained TAA portfolio derived from 

these views using the methodology described in Section II.C. 

Table A2 provides the characteristics of the funds selected for implementation, including the 

minimum allocation to Sustainable Investments specified in their respective prospectus. This 

information is required for the case in which we impose a constraint on the minimum allocation to 

Sustainable Investments in the optimization. 

In Table A3, we report each fund’s exposure to the core asset classes, estimated using Lasso 

regressions as also explained in the Appendix. The table includes the associated R-squared and the 

volatility of the regression residuals, which quantifies the degree of specific risk of each fund. 

Finally, we assume that the active funds were selected based on the expectation that they generate 

positive alpha beyond their systematic exposures to the core indices, with a target information ratio 

of +0.5. For each fund, the expected alpha is thus calculated as the product of this information ratio 
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with the fund specific volatility (the residual volatility from the Lasso regression), minus the 

ongoing charges (OCR). These expected alphas net of OCR can also be found in Table A3. 

The risk model is based on a principal components analysis (PCA) approach. The PCA risk factors 

are constructed from the time series of returns of the core indices. We retain the first six 

eigenvectors as risk factors. Together they explain 89% of the total return variance. The weights 

of the core assets in each of these eigenvector portfolios are shown in Table A4 in the Appendix. 

The optimization is performed as described in Section II.D, using equation (45), where the implied 

returns are calculated using (34), with, as inputs, the risk model and the unconstrained tactical 

views constructed as in equation (25) and shown in Table A1 in the Appendix.  

In the Appendix, we provide full details on the construction of the risk model 𝚺 and the uncertainty 

matrix 𝛀, both defined over the combined universe of core assets and funds. 

The other inputs required for the optimization are the risk aversion parameter, 𝜆, the aversion to 

uncertainty parameter, 𝜅, and the risk budget, 𝑅𝐵, as well as the overall confidence in the expected 

fund alphas, 𝛾. We have set RB = 2% and γ = 15 and used 𝜆⁡ = ⁡ (1 2⁄ ) ⁡∗ ⁡ (0.4 𝑅𝐵⁄ ) and 𝜅 =

0.23 ∗ 𝑚𝑖𝑛⁡(1, ∑ |𝑺𝑑𝑖𝑟
𝑖 |⁡𝑖 ) as proposed by Mallouli et al. (2025). 

III.A No tactical views 

We first consider the example in which the tactical views are muted, so that the optimizer simply 

maximizes the net expected alpha of the fund allocation, tilting in favor of the funds with the 

strongest positive net alpha and away from funds that have smaller or negative net alpha. 

Increasing the parameter 𝛾 increases the extent to which the portfolio tilts more in favor of funds 

with positive net alpha. We apply only standard constraints: each asset weight must be 

non‑negative, must not exceed 100%, and the portfolio must be fully invested. 

Table 3. Optimal TAA portfolio decomposition in the absence of tactical views 

   

Notes: IG: Investment Grade. Sustainable Investment allocation is calculated from each fund minimum 

exposure in Table A2. The tracking error of the TAA portfolio and the SAA Replication sub-portfolio is 

measured relative to the SAA portfolio. For the Alpha sub-portfolios it is simply its volatility. 

Fund

Exposure to

Sustainable Expected

TAA SAA Replication Alpha Constraints Funding Investments Net Alpha

Equity Europe Mid-large Active Fundamental 5.3% 3.2% 2.1% 0.0% 0.0% 30% 0.6%

Equity Europe Mid-large Passive Index 17.0% 19.7% -2.7% 0.0% 0.0% 40% -0.2%

Equity USA Growth Active Fundamental 5.2% 4.2% 0.9% 0.0% 0.0% 25% 4.0%

Equity USA Mid-large Passive Index 5.5% 6.2% -0.7% 0.0% 0.0% 0% -0.1%

Equity Japan Mid-large Active Fundamental 5.1% 4.1% 1.0% 0.0% 0.0% 30% 3.3%

Equity Japan Mid-large Passive Index 4.1% 4.8% -0.7% 0.0% 0.0% 40% -0.2%

Equity Emerging Mid-large Active Fundamental 4.4% 3.4% 1.0% 0.0% 0.0% 20% 3.0%

Equity Emerging Mid-large Passive Index 4.7% 5.7% -0.9% 0.0% 0.0% 20% -0.3%

Bonds Global Aggregate Active Fundamental 4.0% 3.1% 0.9% 0.0% 0.0% 20% 0.1%

Bonds EUR Aggregate Active Fundamental 0.0% 2.2% -2.2% 0.0% 0.0% 20% -0.2%

Bonds EUR Sovereign Active Fundamental 7.1% 1.3% 5.7% 0.0% 0.0% 20% 0.0%

Bonds EUR Sovereign Passive Index 19.8% 24.8% -5.1% 0.0% 0.0% 0% -0.2%

Bonds EUR IG Active Fundamental 3.9% 0.1% 3.8% 0.0% 0.0% 15% 0.8%

Bonds EUR IG Passive Index 0.0% 2.5% -2.5% 0.0% 0.0% 30% -0.2%

Bonds USD IG Passive Index 13.9% 14.6% -0.7% 0.0% 0.0% 25% -0.2%

Portfolio Weight Sum 100.0% 100.0% 0.0% 0.0% 0.0%

Tracking error 1.1% 1.1% 0.2% 0.0% 0.0%

Expected Net Fund Alpha 0.5% 0.3% 0.2% 0.0% 0.0%

Allocation to Sustainable Investments 21% 21% 0% 0% 0%

Portfolio Weights
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Table 3 reports the decomposition of the TAA allocation according to equation (46), breaking the 

final portfolio into its constituent sub-portfolios. The optimized TAA portfolio holds most funds 

in the universe, with the largest positions in the Equity Europe Mid–Large Passive Index and the 

Bonds EUR Sovereign Passive Index. These allocations are primarily driven by the SAA 

replication component, which seeks to match the strategic exposures to core indices. However, 

because both passive funds exhibit slightly negative net alpha, their final weights are reduced 

relative to what a pure replication objective would prescribe. This adjustment is captured in the 

Alpha sub-portfolio, which tilts toward funds with positive net alpha. 

In this example, the SAA Replication portfolio is fully invested, and the Alpha portfolio naturally 

emerges as zero‑sum even without explicit normalization. This follows directly from the 

optimization: none of the imposed constraints bind, so the solution meets all requirements without 

additional constraint‑driven adjustments. 

The subsequent examples introduce non‑zero implied returns derived from the tactical views. As 

before, we impose only standard constraints: non‑negative weights, no position above 100%, and 

full investment. In the final example, we also add a minimum allocation of 30% to Sustainable 

Investments to illustrate how such constraints can be captured by the decomposition. 

III.B Tactical views 

Table 4 reports the results using the same decomposition as in equation (46), but now with tactical 

views. In this case, several constraints are binding. The Constraints column aggregates the 

adjustments required to enforce weight bounds. These are triggered by negative views that would 

otherwise imply short positions. For example, the negative tactical view on the Bond EUR 

Sovereign core index would push the optimizer to short the corresponding fund (Bonds EUR 

Sovereign Passive Index), which would violate the long‑only bounds; the constraint sub-portfolio 

introduces the compensating correction. 

Relative to Table 1, the influence of tactical views is now evident and explains additional 

deviations from the SAA Replication portfolio. A positive view on Equity EMU generates an 

overweight in the Equity Europe Mid-Large Passive Index fund; a negative view on Bond EUR 

Sovereign produces a strong underweight in the Bonds EUR Sovereign Passive Index fund; and a 

positive view on Bond EUR IG results in an overweight in the Bonds EUR IG Passive Index fund. 

Two other views concern core assets without a direct fund proxy in the selected universe: the 

positive view on Bonds USD HY ultimately tilts towards the Bonds USD IG Passive Index and 

the Bonds EUR IG Passive Index funds, while the mildly negative view on Bond EMD HC induces 

modest underweights in the same pair, reflecting their nearest-proxy roles. 

In this example, the SAA Replication portfolio is only slightly short of full investment, and the 

Alpha portfolio is close to but not exactly zero-sum. That will not always hold. When these 

components deviate more materially from full-investment or zero-sum, respectively, the 

decomposition can become harder to interpret, which motivates the normalizations introduced in 

Sections II.F.1 and II.F.3. 

Finally, while the aggregate Constraints column in Table 4 remains interpretable, a further split 

into the individual non-zero weight-bound corrections, as shown in Table 5, makes it less 

transparent: although only three bounds are active, their separate contributions are not 

straightforward to read. This is precisely the situation addressed by the dispatching procedure in 
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Section II.F.5, which reallocates the most extreme weight-bound effects back to their underlying 

drivers, preserving a cleaner explanation. 

Table 4. Optimal TAA portfolio decomposition 

   

Notes: IG: Investment Grade, HY: High Yield, HC: Hard Currency. Sustainable Investment allocation is 

calculated from each fund minimum exposure in Table A2. The tracking error of the TAA portfolio and the 

SAA Replication sub-portfolio is measured relative to the SAA portfolio. For each view sub-portfolio, the 

tracking error is measured against the portfolio that expresses the underlying view using core indices only. 

For the Alpha, Constraints, and Funding sub-portfolios, the relevant risk measure is simply their volatility. 

The sub-portfolios in Table 5 that correct for violations of weight bounds appear extreme because 

they correspond to the unconstrained minimum-variance portfolios with unit exposure to asset i, 

as can be seen from the structure of equation (49). In other words, when a weight bound is breached, 

the optimizer effectively introduces the hedging portfolio that offsets the unwanted exposure as 

efficiently as possible in variance terms, an inherently aggressive adjustment. Using the robustified 

matrix Q instead of the traditional covariance matrix Σ is not enough adequate to attenuate this 

effect sufficiently and the Q based minimum-variance hedging portfolios are still rather sensitive 

to correlations of assets. 

Even so, the sum of these constraint-related sub-portfolios is much easier to interpret. The 

complete decomposition must add up exactly to the TAA portfolio, and the other components 

(SAA Min-TE, Alpha, and Funding) tend to be far less extreme by construction. As a result, while 

the individual constraint-correction portfolios can be difficult to interpret on their own, their 

aggregate effect fits naturally into the overall decomposition and remains consistent with the 

economic drivers of the final allocation. 

Table 6 reports the decomposition of the same portfolio as in Table 4, but now (i) forcing the SAA 

Replication portfolio to be fully invested (per equation (51)), (ii) normalizing the Alpha portfolio 

to be zero‑sum (per equation (57)), and (iii) dispatching the Constraint sub‑portfolios (per 

equation (65)). 

 

TAA SAA Replication Alpha Constraints Funding

Equity Bond Bond Bond Bond

EMU EUR EUR USD EMD

Sovereign IG HY HC

0.50 -1.00 0.50 0.50 -0.25

Equity Europe Mid-large Active Fundamental 5.2% 2.9% 0.8% 0.0% 0.0% 0.1% 0.0% 1.4% 0.0% -0.1%

Equity Europe Mid-large Passive Index 21.9% 17.7% 4.9% 0.0% 0.1% 0.9% -0.3% -1.6% 0.2% 0.0%

Equity USA Growth Active Fundamental 5.6% 5.2% 0.1% 0.0% 0.0% 0.3% -0.1% 0.5% -0.1% -0.2%

Equity USA Mid-large Passive Index 7.3% 7.5% 0.1% 0.0% 0.0% 0.4% -0.1% -0.6% -0.1% 0.2%

Equity Japan Mid-large Active Fundamental 5.7% 4.4% 0.1% 0.0% 0.0% 0.2% 0.0% 0.7% 0.1% 0.2%

Equity Japan Mid-large Passive Index 5.4% 5.2% 0.1% 0.0% 0.0% 0.3% 0.0% -0.5% 0.1% 0.2%

Equity Emerging Mid-large Active Fundamental 4.5% 3.2% 0.0% 0.1% 0.0% 0.4% -0.3% 0.7% 0.3% 0.1%

Equity Emerging Mid-large Passive Index 5.6% 5.3% 0.1% 0.1% 0.0% 0.7% -0.5% -0.6% 0.4% 0.0%

Bonds Global Aggregate Active Fundamental 3.2% 6.8% -0.1% -0.7% 0.0% -1.8% -0.6% 0.8% -3.6% 2.4%

Bonds EUR Aggregate Active Fundamental 0.0% 1.6% 0.0% -2.5% 0.8% 0.1% -0.1% -5.1% -4.3% 9.6%

Bonds EUR Sovereign Active Fundamental 0.0% 1.0% 0.0% -1.8% 0.0% -0.1% 0.0% 4.0% -3.6% 0.4%

Bonds EUR Sovereign Passive Index 0.0% 21.3% -0.1% -37.0% 0.0% -1.8% -0.2% -0.5% 22.7% -4.5%

Bonds EUR IG Active Fundamental 5.4% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 3.1% 0.0% 2.1%

Bonds EUR IG Passive Index 19.4% 3.9% 0.3% -0.2% 18.9% 5.8% -1.6% -1.7% -3.0% -2.9%

Bonds USD IG Passive Index 10.7% 12.6% 0.1% -0.5% 0.4% 3.4% -2.2% -0.4% -2.2% -0.6%

Portfolio Weight Sum 100.0% 98.4% 6.3% -42.4% 20.4% 9.1% -5.9% 0.3% 6.8% 7.0%

Tracking error 2.2% 1.1% 0.1% 0.1% 0.1% 0.5% 0.2% 0.2% 0.5% 0.3%

Expected Net Fund Alpha 0.5% 0.3% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0%

Allocation to Sustainable Investments 28% 21% 2% -1% 6% 3% -1% 0% -4% 2%

Portfolio Weights

Views
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Table 5. Decomposition of constraints sub-portfolio in Table 3 

   

Notes: IG: Investment Grade. Sustainable Investment allocation is calculated from each fund minimum 

exposure in Table A2. The tracking error of each view sub-portfolio is measured against the portfolio that 

expresses the underlying view using core indices only. For the Constraints sub-portfolio, created as their 

sum, it is just its volatility. 

Table 6. Optimal TAA portfolio decomposition with normalization and dispatching of offsetting 

constraints 

   

Notes: IG: Investment Grade, HY: High Yield, HC: Hard Currency. Sustainable Investment allocation is 

calculated from each fund minimum exposure in Table A2. The tracking error of the TAA portfolio and the 

SAA Min TE sub-portfolio is measured relative to the SAA portfolio. For each view sub-portfolio, the 

tracking error is measured against the portfolio that expresses the underlying view using core indices only. 

For the Alpha and Funding sub-portfolios, the relevant risk measure is simply their volatility. 

Constraints

Bonds EUR Bonds EUR Bonds EUR 

Aggregate Sovereign Sovereign

Active Active Passive

Fundamental Fundamental Index

Equity Europe Mid-large Active Fundamental 0.0% 0.0% 0.0% 0.0%

Equity Europe Mid-large Passive Index 0.2% 0.0% 0.0% 0.2%

Equity USA Growth Active Fundamental -0.1% 0.0% 0.0% -0.1%

Equity USA Mid-large Passive Index -0.1% 0.0% 0.0% -0.1%

Equity Japan Mid-large Active Fundamental 0.1% 0.0% 0.0% 0.1%

Equity Japan Mid-large Passive Index 0.1% 0.0% 0.0% 0.1%

Equity Emerging Mid-large Active Fundamental 0.3% 0.0% 0.0% 0.2%

Equity Emerging Mid-large Passive Index 0.4% 0.0% 0.0% 0.4%

Bonds Global Aggregate Active Fundamental -3.6% -0.4% -0.1% -3.1%

Bonds EUR Aggregate Active Fundamental -4.3% 484.4% -21.7% -467.0%

Bonds EUR Sovereign Active Fundamental -3.6% -15.2% 345.3% -333.8%

Bonds EUR Sovereign Passive Index 22.7% -320.3% -327.9% 671.0%

Bonds EUR IG Active Fundamental 0.0% -0.8% 0.0% 0.7%

Bonds EUR IG Passive Index -3.0% -129.7% 5.6% 121.1%

Bonds USD IG Passive Index -2.2% -0.1% -0.1% -2.0%

Portfolio Weight Sum 6.8% 17.9% 1.1% -12.2%

Tracking error 0.5% 2.7% 2.8% 3.9%

Expected Net Fund Alpha -1.4% -0.4% 0.4% -0.1%

Allocation to Sustainable Investments 0% 55% 66% -125%

Constraints

Portfolio Weights

TAA SAA Min TE Alpha Funding

Equity Bond Bond Bond Bond

EMU EUR EUR USD EMD

Sovereign IG HY HC

0.50 -1.00 0.50 0.50 -0.25

Equity Europe Mid-large Active Fundamental 5.2% 2.9% 0.8% 0.0% 0.0% 0.1% 0.0% 1.5% -0.1%

Equity Europe Mid-large Passive Index 21.9% 17.7% 4.9% 0.1% 0.1% 0.9% -0.3% -1.5% 0.0%

Equity USA Growth Active Fundamental 5.6% 5.1% 0.1% 0.1% 0.0% 0.3% -0.1% 0.7% -0.4%

Equity USA Mid-large Passive Index 7.3% 7.5% 0.1% -0.1% 0.0% 0.4% -0.1% -0.7% 0.3%

Equity Japan Mid-large Active Fundamental 5.7% 4.4% 0.1% 0.0% 0.0% 0.2% 0.0% 0.6% 0.4%

Equity Japan Mid-large Passive Index 5.4% 5.2% 0.1% 0.0% 0.0% 0.3% 0.0% -0.5% 0.4%

Equity Emerging Mid-large Active Fundamental 4.5% 3.2% 0.0% 0.1% 0.0% 0.4% -0.3% 0.8% 0.2%

Equity Emerging Mid-large Passive Index 5.6% 5.3% 0.1% 0.3% 0.0% 0.7% -0.5% -0.4% 0.0%

Bonds Global Aggregate Active Fundamental 3.2% 7.2% -0.1% -3.1% 0.0% -1.9% -0.6% -2.3% 3.9%

Bonds EUR Aggregate Active Fundamental 0.0% 3.1% 0.0% -14.5% 0.8% -0.6% -0.1% -3.0% 14.3%

Bonds EUR Sovereign Active Fundamental 0.0% 0.9% 0.0% -5.9% 0.0% -0.3% 0.0% 5.7% -0.4%

Bonds EUR Sovereign Passive Index 0.0% 21.2% 0.0% -18.8% 0.0% -0.9% -0.1% 2.4% -3.8%

Bonds EUR IG Active Fundamental 5.4% 0.5% 0.0% -0.8% 0.1% 0.0% 0.0% 1.9% 3.7%

Bonds EUR IG Passive Index 19.4% 3.3% 0.3% 1.4% 18.9% 5.9% -1.6% -4.0% -4.7%

Bonds USD IG Passive Index 10.7% 12.4% 0.1% -1.1% 0.4% 3.4% -2.2% -1.1% -1.3%

Portfolio Weight Sum 100.0% 100.0% 6.3% -42.4% 20.4% 9.1% -5.9% 0.0% 12.5%

Tracking error 2.2% 1.1% 0.1% 0.3% 0.1% 0.5% 0.2% 0.2% 0.5%

Expected Net Fund Alpha 0.5% 0.3% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0%

Allocation to Sustainable Investments 28% 21% 2% -5% 6% 3% -1% -1% 3%

Views

Portfolio Weights
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Under this normalization, the results for SAA Min‑TE in Table 6 are very close to the SAA 

Replication in Table 4, and the Alpha sup portfolios are also broadly consistent in the two tables. 

The main differences are: first, the explicit Constraints columns are no longer present (their effects 

have been dispatched to the relevant drivers); second, the Tactical Views sub‑portfolio adjusts 

accordingly. In particular, the previously negative view on Bond EUR Sovereign, which had 

generated a violation of the long‑only constraint, now appears less negative on the Bonds EUR 

Sovereign Passive Index fund. Instead, part of the adjustment is reallocated as an additional 

underweight in the Bonds EUR Aggregate Active Fundamental fund. 

Overall, the zero allocation across these two bond funds is decomposed differently than in Table 

4 yet remains economically consistent with those earlier results but now expressed without 

resorting to the separate Constraint sub-portfolios and with clearer attribution to the view that 

caused the adjustment. 

III.C Additional linear constraints 

In the final case, in Table 7 we present the decomposition for the same example, now with an 

additional linear constraint requiring a minimum allocation of 30% to Sustainable Investments in 

the TAA portfolio. The breakdown follows the approach in Table 6: the SAA Min TE portfolio is 

fully invested, the Alpha portfolio is normalized to be zero‑sum, and weight‑bound Constraint 

portfolios are dispatched. However, we do not dispatch the Constraint sub‑portfolio associated 

with the sustainability requirement, as we wish to assess its magnitude and impact explicitly.  

Table 7. Optimal TAA portfolio decomposition with normalization, dispatching of offsetting weight 

constraints and contribution from a constraint on minimum allocation to sustainable investments 

 

Notes: IG: Investment Grade, HY: High Yield, HC: Hard Currency. Sustainable Investment allocation is 

calculated from each fund minimum exposure in Table A2. The tracking error of the TAA portfolio and the 

SAA Min TE sub-portfolio is measured relative to the SAA portfolio. For each view sub-portfolio, the 

tracking error is measured against the portfolio that expresses the underlying view using core indices only. 

For the Alpha, Constraints, and Funding sub-portfolios, the relevant risk measure is simply their volatility. 

Imposing the 30% floor materially reshapes the optimized TAA. The optimizer reallocates toward 

funds with higher Sustainable Investments exposure and away from those with limited or no 

sustainable content. Funds with stronger sustainability profiles absorb a larger share, as they are 

TAA SAA Min TE Alpha Constraints Funding

Equity Bond Bond Bond Bond 30% Minimum Fund

EMU EUR EUR USD EMD Allocation to Exposure to

Sovereign IG HY HC Sustainable Sustainable Expected

0.50 -1.00 0.50 0.50 -0.25 Investments Investments Net Alpha

Equity Europe Mid-large Active Fundamental 2.1% 2.9% 0.8% 0.0% 0.0% 0.2% 0.0% 1.5% -3.1% -0.1% 30% 0.6%

Equity Europe Mid-large Passive Index 25.9% 17.8% 5.1% 0.0% 0.0% 0.9% -0.3% -1.6% 3.9% 0.0% 40% -0.2%

Equity USA Growth Active Fundamental 6.4% 5.1% 0.0% 0.0% 0.0% 0.3% -0.1% 0.6% 0.9% -0.5% 25% 4.0%

Equity USA Mid-large Passive Index 4.8% 7.5% 0.1% 0.0% 0.0% 0.4% -0.1% -0.6% -2.6% 0.3% 0% -0.1%

Equity Japan Mid-large Active Fundamental 5.5% 4.4% 0.0% 0.0% 0.0% 0.2% 0.0% 0.6% -0.4% 0.5% 30% 3.3%

Equity Japan Mid-large Passive Index 6.1% 5.2% 0.0% 0.0% 0.0% 0.3% 0.0% -0.5% 0.6% 0.4% 40% -0.2%

Equity Emerging Mid-large Active Fundamental 4.4% 3.2% 0.0% 0.1% 0.0% 0.4% -0.3% 0.8% 0.0% 0.2% 20% 3.0%

Equity Emerging Mid-large Passive Index 5.4% 5.3% 0.0% 0.1% 0.0% 0.7% -0.5% -0.5% 0.2% 0.0% 20% -0.3%

Bonds Global Aggregate Active Fundamental 0.0% 7.2% -0.1% -1.0% 0.0% -1.7% -0.6% 0.0% -8.3% 4.4% 20% 0.1%

Bonds EUR Aggregate Active Fundamental 0.0% 2.7% 0.0% -22.8% 0.7% -1.0% -0.1% -13.2% 20.5% 13.3% 20% -0.2%

Bonds EUR Sovereign Active Fundamental 0.0% 0.3% 0.0% -19.5% -0.1% -1.0% -0.1% -9.1% 32.6% -3.1% 20% 0.0%

Bonds EUR Sovereign Passive Index 0.0% 22.0% 0.0% -4.2% 0.0% -0.2% 0.0% 20.2% -36.8% -0.9% 0% -0.2%

Bonds EUR IG Active Fundamental 0.0% 0.5% 0.0% 0.2% 0.1% 0.0% 0.0% 3.4% -8.2% 4.0% 15% 0.8%

Bonds EUR IG Passive Index 28.4% 3.5% 0.2% 4.7% 19.7% 6.2% -1.6% -0.8% 1.0% -4.3% 30% -0.2%

Bonds USD IG Passive Index 11.0% 12.5% 0.1% -0.6% 0.2% 3.4% -2.2% -0.7% -0.3% -1.3% 25% -0.2%

Portfolio Weight Sum 100.0% 100.0% 6.3% -43.1% 20.7% 9.2% -6.0% 0.0% 0.0% 12.9%

Tracking error 2.2% 1.1% 0.1% 0.2% 0.0% 0.5% 0.2% 0.2% 0.5% 0.5%

Expected Net Fund Alpha 0.4% 0.3% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% -0.1% 0.0%

Allocation to Sustainable Investments 30% 21% 2% -7% 6% 3% -1% -4% 9% 2%

Views

Portfolio Weights
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the most efficient vehicles to meet the requirement with minimal disruption to tracking error and 

expected performance. Conversely, lower‑Sustainable Investments funds are reduced, sometimes 

to their lowest feasible levels, with the sustainability‑constraint sub‑portfolio recording the 

necessary offsetting adjustments.  

Through dispatching, the constraint interacts with the Views and Alpha components. View‑driven 

positions remain directionally consistent but are mildly attenuated to accommodate the 

sustainability tilt. As with weight‑bound corrections in Table 5, however, keeping the 

sustainability Constraint sub‑portfolio explicit can complicate interpretation; dispatching the other 

constraints makes this interaction more visible in the Alpha term. The complexity is amplified for 

funds in which the tactical views already push towards zero in Tables 3 and 5. 

Two practical remedies are available. One is to revert to the simplified presentation used in Table 

4, aggregating all constraint effects, including the sustainability floor, into a single Constraints 

portfolio. The other, if the sustainability Constraint portfolio is to be shown explicitly, is to reapply 

the framework to a reduced investable universe that excludes funds effectively set to zero by 

tactical views. We report the results of the latter approach in Table 8 after removing the funds 

Bonds EUR Aggregate Active Fundamental, Bonds EUR Sovereign Active Fundamental and 

Bonds EUR Sovereign Passive Index.  

Table 8. Optimal TAA portfolio decomposition with normalization, dispatching of offsetting weight 

constraints, contribution from a constraint on sustainable investments on restricted fund universe. 

 

Notes: IG: Investment Grade, HY: High Yield, HC: Hard Currency. Sustainable Investment allocation is 

calculated from each fund minimum exposure in Table A2. The tracking error of the TAA portfolio and the 

SAA Min TE sub-portfolio is measured relative to the SAA portfolio. For each view sub-portfolio, the 

tracking error is measured against the portfolio that expresses the underlying view using core indices only. 

For the Alpha, Constraints, and Funding sub-portfolios, the relevant risk measure is simply their volatility. 

Table 8 addresses the interpretability issues observed in Table 6. In this version, the Alpha 

sub‑portfolio once again behaves as expected by tilting in favor of funds with higher net alpha and 

away from those with lower or negative net alpha. The Constraints sub‑portfolio cleanly reflects 

the sustainability requirement, reallocating weight away from funds with limited Sustainable 

Investments exposure and towards those with stronger commitments. 

TAA SAA Min TE Alpha Constraints Funding

Equity Bond Bond Bond Bond 30% Minimum Fund

EMU EUR EUR USD EMD Allocation to Exposure to

Sovereign IG HY HC Sustainable Sustainable Expected

0.50 -1.00 0.50 0.50 -0.25 Investments Investments Net Alpha

Equity Europe Mid-large Active Fundamental 2.1% 2.7% 0.8% 0.1% 0.0% 0.2% 0.0% 1.5% -3.2% 0.1% 30% 0.6%

Equity Europe Mid-large Passive Index 25.9% 17.5% 5.1% 0.5% 0.0% 0.9% -0.3% -1.6% 3.8% 0.0% 40% -0.2%

Equity USA Growth Active Fundamental 6.4% 4.7% 0.0% -0.2% 0.0% 0.3% -0.1% 0.6% 0.7% 0.3% 25% 4.0%

Equity USA Mid-large Passive Index 4.8% 8.0% 0.1% -0.3% 0.0% 0.4% -0.1% -0.6% -2.3% -0.2% 0% -0.1%

Equity Japan Mid-large Active Fundamental 5.5% 4.7% 0.0% 0.3% 0.0% 0.2% 0.0% 0.6% -0.2% -0.2% 30% 3.3%

Equity Japan Mid-large Passive Index 6.1% 5.4% 0.0% 0.3% 0.0% 0.3% 0.0% -0.5% 0.7% -0.2% 40% -0.2%

Equity Emerging Mid-large Active Fundamental 4.4% 2.9% 0.0% 0.7% 0.0% 0.5% -0.3% 0.7% -0.1% 0.0% 20% 3.0%

Equity Emerging Mid-large Passive Index 5.4% 4.5% 0.0% 1.2% 0.0% 0.8% -0.5% -0.6% -0.2% 0.1% 20% -0.3%

Bonds Global Aggregate Active Fundamental 0.0% 18.4% -0.1% -9.4% 0.1% -2.1% -0.6% 0.6% -3.8% -3.1% 20% 0.1%

Bonds EUR IG Active Fundamental 0.0% 4.6% 0.0% -0.1% 0.1% 0.0% 0.0% 3.3% -6.8% -1.2% 15% 0.8%

Bonds EUR IG Passive Index 28.4% 11.3% 0.2% -12.0% 19.9% 5.4% -1.7% -3.6% 10.3% -1.5% 30% -0.2%

Bonds USD IG Passive Index 11.0% 15.4% 0.1% -6.5% 0.3% 3.2% -2.3% -0.4% 1.1% 0.2% 25% -0.2%

Portfolio Weight Sum 100.0% 100.0% 6.3% -25.2% 20.5% 10.0% -5.9% 0.0% 0.0% -5.7%

Tracking error 2.2% 1.4% 0.1% 1.2% 0.1% 0.5% 0.2% 0.2% 0.3% 0.2%

Expected Net Fund Alpha 0.4% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% -0.1% 0.0%

Allocation to Sustainable Investments 30% 26% 2% -6% 6% 3% -1% -1% 2% -1%

Portfolio Weights

Views
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The Tactical‑views sub-portfolios remain easy to interpret. They continue to tilt allocations in line 

with the underlying directional views, favoring funds that provide exposure to positively viewed 

asset classes and reducing allocations to those linked to negatively viewed ones. The most negative 

view, on Bond EUR Sovereign, now produces an underweight in the Bonds EUR IG Passive Index 

and the Bonds Global Aggregate Active Fundamental funds. Both funds exhibit meaningful 

exposure to Bond EUR Sovereign risk, as captured by the systematic variance–covariance 

structure, 𝚺𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐
𝑓𝑢𝑛𝑑,𝑓𝑢𝑛𝑑

 in (A6), and the corresponding elements of the uncertainty matrix, 

𝛀𝑠𝑦𝑠𝑡𝑒𝑚𝑖𝑐
𝑓𝑢𝑛𝑑,𝑓𝑢𝑛𝑑

 in (A9). 

While this refinement improves interpretability, it comes at a cost: the SAA Min‑TE sub-portfolio 

must adapt to the reduced investable universe after excluding certain funds, which leads to an 

increase in its tracking error relative to the original baseline in Table 6. 

Overall, Table 8 restores a clean, coherent decomposition in which Alpha, Views, and Constraints 

once again reflect their intended economic drivers. The sustainability requirement yields a 

transparent, interpretable re‑tilt of the TAA portfolio, achieved through this second iteration of the 

framework. The decomposition remains fully additive: each fund’s final weight can still be traced 

back to contributions from SAA replication, tactical views, fund net alphas, the explicit 

sustainability constraint, and the funding adjustment.  

IV. Discussion 

We propose a practical approach for real‑world applications that makes the allocation of portfolio 

optimization for a benchmarked, constrained TAA portfolio transparent and traceable to its drivers. 

The framework builds on the well‑known result that an MVO portfolio can be written as an 

unconstrained solution plus correction terms and extend this decomposition to RPO. We adapt the 

approach to state‑of‑the‑art TAA portfolio construction using RPO so that each optimized weight 

can be decomposed into contributions of sub-portfolios that reflect a replication of the SAA using 

a list of funds selected for the implementation, the tactical views, the expected net alpha of the 

selected funds, the binding constraints, and the funding adjustment required to meet the fully 

invested constraint. This framework allows stakeholders to see precisely why the optimizer chose 

a given allocation. A case study with real funds and a minimum sustainable‑investment constraint 

illustrates these elements clearly in the decomposition. 

V. Appendix A 

In Table A1, we list the core assets that compose the SAA portfolio, together with their indices, 

associated volatilities, and SAA weights. The core assets form the set N of non-investable assets 

in the analytical framework of this paper. The table also presents the directional tactical bets used 

in numerical examples, as well as the corresponding unconstrained active tactical portfolio 

constructed from these directional scores and asset volatilities using equation (25).  

In Table A2, we present the characteristics of the funds selected for implementing the TAA 

portfolio. The data set used in this paper is based on existing, investable funds. For fixed‑income 

funds denominated in non‑EUR currencies, we use the EUR‑hedged share class to ensure 

consistency with the EUR‑based risk model. For equity funds, currency returns are simply 

converted into EUR. The minimum allocation to Sustainable Investments for each fund, defined 
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according to the Sustainable Finance Disclosure Regulation (SFDR) framework of the European 

Union, is obtained directly from the respective fund prospectus.  

Table A1. SAA portfolio and the active unconstrained TAA portfolio   

  
Notes: SC: Small Caps, IG: Investment Grade, HY: High Yield, HC: Hard Currency, LC: Local Currency. 

Source: 1) MSCI, 2) Bloomberg, 3) J.P. Morgan, 4) FTSE EPRA. Authors’ calculations. 

Table A2. Characteristics of the funds selected for portfolio construction 

 
Notes: SC: Small Caps, IG: Investment Grade, HY: High Yield, HC: Hard Currency, LC: Local Currency. 

In Table A3, we report the results of the regression analysis performed on the vector of weekly 

returns in excess of cash 𝑿𝑹𝑓
𝑖  of each fund i listed in Table A2 against the matrix of weekly returns 

in excess of cash 𝑿𝑹𝑐 of the core indices in Table A1. The regression is performed from end of 

November 2020 to end of November 2025. To estimate the factor exposures, we employ Lasso 

regressions as proposed by Tibshirani (1996) rather than ordinary least squares. Lasso’s ℓ1-penalty 
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Equity Europe EMU NDDLEURO Index 1 - 15.5% 19% 0.50 6%

Equity Europe EMU SC NCLDEMU Index 1 - 16.5%

Equity Europe UK NDDLUK Index 1 No 11.7%

Equity USA NDDUUS Index 1 No 15.4% 15%

Equity USA SC RU20INTR Index 2 No 20.8%

Equity Japan NDDLJN Index 1 No 14.1% 9%

Equity Emerging Global NDUEEGF Index 1 No 16.5% 7%

Bond EUR Sovereign LEATTREU Index 3 - 5.4% 20% -1.00 -43%

Bond EUR Investment Grade LECPTREU Index 3 - 4.7% 5% 0.50 24%

Bond EUR High Yield LF88TREU Index 3 - 7.0%

Bond USD Sovereign LUATTRUU Index 3 Yes 4.8% 13%

Bond USD IG LUACTRUU Index 3 Yes 6.9% 12%

Bond USD HY LF89TRUU Index 3 Yes 7.3% 0.50 11%

Bond EMD HC Sov Global JPGCCOMP Index 4 Yes 9.0% -0.25 -6%

Bond EMD LC Sov Global JGENVUUG Index 4 Yes 10.7%

Diversification Real Estate Pan-Europe TRNHUE Index 5 Yes 18.9%

Diversification Commodity Global BCOMXALT Index 3 Yes 16.7%

Hedging Sustainable Inception

into EUR Investment Date

Equity Europe Mid-large Active Fundamental Equity Eurozone Mid-large Active Fundamental No 30% 23-Oct-03

Equity Europe Mid-large Passive Index Equity Eurozone Mid-large Passive Index No 40% 1-Dec-10

Equity USA Growth Active Fundamental Equity USA Growth Active Fundamental No 25% 3-Jan-95

Equity USA Mid-large Passive Index Equity USA Mid-large Passive Index No 0% 10-Jun-08

Equity Japan Mid-large Active Fundamental Equity Japan Mid-large Active Fundamental No 30% 31-Dec-90

Equity Japan Mid-large Passive Index Equity Japan Mid-large Passive Index No 40% 2-Aug-23

Equity Emerging Mid-large Active Fundamental Equity Emerging Markets Mid-large Active Fundamental No 20% 20-Oct-97

Equity Emerging Mid-large Passive Index Equity Emerging Markets Mid-large Passive Index No 20% 3-Sep-12

Bonds Global Aggregate Active Fundamental Bond Global Aggregate Active Fundamental Yes 20% 5-Nov-01

Bonds EUR Aggregate Active Fundamental Bond EUR Aggregate Active Fundamental - 20% 4-Apr-00

Bonds EUR Sovereign Active Fundamental Bond EUR Sovereign Active Fundamental - 20% 27-Jun-01

Bonds EUR Sovereign Passive Index Bond EUR Sovereign Passive Index - 0% 31-May-17

Bonds EUR IG Active Fundamental Bond EUR Investment Grade Active Fundamental - 15% 1-Feb-22

Bonds EUR IG Passive Index Bond EUR Investment Grade Passive Index - 30% 15-Jan-19

Bonds USD IG Passive Index Bond USD Investment Grade Passive Index Yes 25% 12-Sep-23

PhilosophyDesignation Asset Class Coverage Style Approch
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allows coefficients associated with non-significant explanatory variables to shrink exactly to zero, 

yielding parsimonious and interpretable exposures while mitigating overfitting. 

For each fund i, the vector 𝜷𝑓𝑐
𝑖  with the betas is obtained by solving: 

𝜷̂LASSO = arg⁡min⁡
𝜷

[∥ 𝑿𝑹𝑓
𝑖 − (𝜷𝑓𝑐

𝑖 )
⊤
𝑿𝑹𝑐 ∥2 +⁡𝜉  ∥ 𝜷𝑓𝑐

𝑖 ∥1]    (A1) 

Where ∥⋅∥2 denotes the squared Euclidean (i.e., ℓ2 ) norm, ∥. ∥1  is the ℓ1⁡norm and 𝜉  is the 

regularization parameter. The value of 𝜉  is selected via cross-validation over a grid of 100 

candidate values ranging from 𝜉, the smallest penalty that zeros all coefficients, down to 𝜉min =
𝜉max/105. The final choice of 𝜉 follows the one-standard-error rule, balancing model sparsity and 

predictive accuracy, as recommended by Hastie et al. (2015). 

Table A3 also reports the Ongoing Charges (OCR) of each fund. The alphas shown in the table are 

net of these charges and are used directly in equation (34). For each fund, the expected alpha is 

calculated as the product of its expected information ratio and its specific volatility (the residual 

volatility from the Lasso regression), minus the OCR. The information ratio is set to 0.5 for 

actively managed funds and to 0 for passive funds, reflecting the assumption that the selected 

active funds were included based on their managers’ ability to generate alpha. 

Table A3. Fund analytics  

 
Notes: IG: Investment Grade. 

Source: MSCI, Bloomberg, J.P. Morgan, FTSE EPRA. Authors’ calculations. 

VI. Appendix B 

Following Bass, Gladstone, and Ang (2017), we construct the risk model using monthly returns in 

excess of cash of the core asset classes, expressed in EUR, over a 20-year period from the end of 

November 2005 to the end of November 2025. To capture the main sources of common variation 

in a parsimonious way, we apply Principal Component Analysis (PCA) to the correlation matrix 
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Equity Europe Mid-large Active Fundamental 3.0% 0.96 0.5 0.96% 0.6% 0.99

Equity Europe Mid-large Passive Index 1.2% 0.99 0.0 0.15% -0.2% 0.99

Equity USA Growth Active Fundamental 10.0% 0.79 0.5 0.96% 4.0% 1.21

Equity USA Mid-large Passive Index 6.9% 0.81 0.0 0.14% -0.1% 0.84

Equity Japan Mid-large Active Fundamental 8.5% 0.72 0.5 0.98% 3.3% 0.72

Equity Japan Mid-large Passive Index 8.0% 0.72 0.0 0.15% -0.2% 0.76

Equity Emerging Mid-large Active Fundamental 8.2% 0.73 0.5 1.11% 3.0% 0.77

Equity Emerging Mid-large Passive Index 6.6% 0.83 0.0 0.27% -0.3% 0.83

Bonds Global Aggregate Active Fundamental 2.6% 0.79 0.5 1.15% 0.1% 0.35 0.37 0.27

Bonds EUR Aggregate Active Fundamental 0.6% 0.99 0.5 0.49% -0.2% 0.68 0.30

Bonds EUR Sovereign Active Fundamental 0.8% 0.98 0.5 0.43% 0.0% 0.97

Bonds EUR Sovereign Passive Index 0.2% 1.00 0.0 0.15% -0.2% 0.97

Bonds EUR IG Active Fundamental 2.6% 0.71 0.5 0.47% 0.8% 0.93

Bonds EUR IG Passive Index 0.2% 1.00 0.0 0.15% -0.2% 1.12

Bonds USD IG Passive Index 0.2% 1.00 0.0 0.20% -0.2% 1.02

Beta of Funds to Core Assets
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of these returns. PCA decomposes the correlation matrix into orthogonal eigenvectors, 

interpretable as long–short portfolios, and associated eigenvalues that rank their relative 

importance. Denoting the correlation matrix by𝑪core , its PCA representation is 𝑪core = 𝑽𝚲𝑽⊤ , 

where 𝑽  contains the eigenvectors and 𝚲  is the diagonal matrix of ordered eigenvalues. The 

variance–covariance matrix is then obtained by rescaling this structure with the volatilities of the 

core assets, 𝚺core = 𝚺diag 𝑪core 𝚺diag. 

For the core assets, we retain the first six principal components, which together explain 89% of 

the total variance. These factors summarize the dominant drivers of co-movements across asset 

classes while filtering out high-frequency noise. The first component resembles a broad market 

factor, the second behaves like a duration factor loading positively on sovereign and 

investment-grade bonds, and the third captures risks associated with emerging markets and 

commodities. The remaining components explain progressively smaller shares of variance and are 

less economically interpretable, though they contribute to improving the overall conditioning of 

the risk model. 

Table A4. Statistical risk model based on core asset returns 

  
Note: Risk model estimation based on a PCA model using monthly EUR returns in excess of cash from end 

of November 2005 through end of November 2025. 

Source: 1) MSCI, 2) Russell, 3) Bloomberg, 4) J.P. Morgan, 5) FTSE EPRA. Authors’ calculations. 

We set the diagonal matrix of 𝚺𝑐𝑜𝑟𝑒  to the variances of the core assets, with each variance 

estimated from weekly EUR-denominated returns over the same sample period. 

𝚺𝑐𝑜𝑟𝑒 =⁡ [
𝑣𝑎𝑟𝑐𝑜𝑟𝑒

1 ⋯ 𝑐𝑜𝑣𝑐𝑜𝑟𝑒
1,𝑛𝑁

⋮ ⋱ ⋮

𝑐𝑜𝑣𝑐𝑜𝑟𝑒
𝑛𝑁,1

⋯ 𝑣𝑎𝑟𝑐𝑜𝑟𝑒
𝑛𝑁

]        (A2) 

with⁡𝑣𝑎𝑟𝑐𝑜𝑟𝑒
𝑖 = 𝑐𝑜𝑣𝑐𝑜𝑟𝑒

𝑖,𝑖 = (𝜎𝑐𝑜𝑟𝑒
𝑖 )

2
 for core asset i. 

The final variance–covariance matrix 𝚺 for core assets and funds will have size 𝑛𝐴 × 𝑛𝐴 with 𝑛𝐴= 

𝑛𝐼 +⁡𝑛𝑁 where 𝑛𝐼 is the number of investable funds and 𝑛𝑁 the number of non-investable assets, 

which are exactly the core assets in this setup . This matrix can be written as the sum: 

Total Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Index

% of variance explained 89% 56% 16% 7% 4% 3% 3% provider

Core Assets Tickers

Equity Europe EMU NDDLEURO Index 28.0% -13.8% -25.7% -15.4% 52.8% -15.3% 1

Equity Europe EMU SC NCLDEMU Index 28.6% -13.5% -20.6% -1.3% -3.5% -23.4% 1

Equity Europe UK NDDLUK Index 26.3% -14.8% -8.7% -17.5% -6.7% -25.3% 1

Equity USA NDDUUS Index 28.5% -10.0% -9.8% -22.7% -26.4% 26.0% 1

Equity USA SC RU20INTR Index 26.4% -13.5% -12.3% -22.9% -8.1% 23.0% 2

Equity Japan NDDLJN Index 20.9% -25.7% -22.1% -16.5% -6.9% 48.3% 1

Equity Emerging Global NDUEEGF Index 27.1% -7.9% 31.5% -19.5% 38.0% 0.0% 1

Bond EUR Sovereign LEATTREU Index 9.2% 48.7% -27.1% -3.2% 18.7% 35.4% 3

Bond EUR Investment Grade LECPTREU Index 23.5% 30.5% -14.5% 34.3% -15.6% 24.9% 3

Bond EUR High Yield LF88TREU Index 27.7% -3.2% 1.5% 52.3% -5.9% -4.2% 3

Bond USD Sovereign LUATTRUU Index 1.2% 53.1% 6.4% -39.7% 19.9% -5.9% 3

Bond USD IG LUACTRUU Index 22.5% 37.8% 9.7% 5.8% -10.9% -2.0% 3

Bond USD HY LF89TRUU Index 29.0% 0.2% 9.4% 34.3% 9.4% -4.6% 3

Bond EMD HC Sov Global JPGCCOMP Index 27.2% 20.1% 22.4% 1.9% 15.2% -13.7% 4

Bond EMD LC Sov Global JGENVUUG Index 24.5% 9.0% 41.6% -28.6% 18.6% -16.1% 4

Diversification Real Estate Pan-Europe TRNHUE Index 25.6% 4.1% -28.8% 6.7% 25.1% -39.1% 5

Diversification Commodity Global BCOMXALT Index 16.8% -18.4% 53.7% 13.5% -32.7% 33.3% 3

Statistical factors

Core Asset weights in PCA orthonormal factors
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𝚺 = ⁡𝚺𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 + 𝚺𝑓𝑢𝑛𝑑⁡𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐            (A3) 

and requires the betas of the funds, 𝜷𝑓𝑐
𝑖 , relative to core assets as well as the specific variance of 

funds, 𝑣𝑎𝑟𝑓𝑐
𝑖 = (𝜎𝑓𝑐

𝑖 )
2
.  

The systematic variance-covariance, 𝚺𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐, is based on 𝚺𝑐𝑜𝑟𝑒 and on 𝜷𝑎𝑙𝑙, a 𝑛𝐴 ⁡× ⁡𝑛𝑁 matrix 

where the columns have the vectors of exposures i) of core assets to themselves (each vector is 1 

on the row for the respective core asset and zero otherwise) and ii) of the funds to the core assets, 

𝜷𝑓𝑐
𝑖 : 

𝚺𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 =⁡𝜷𝑎𝑙𝑙𝚺𝑐𝑜𝑟𝑒𝜷𝑎𝑙𝑙
⊤          (A4) 

with: 

 

𝜷𝑎𝑙𝑙 =⁡

[
 
 
 
 
 
 

1 ⁡… ⁡⁡⁡0
⋮⁡ ⁡1 ⁡⁡⋮
0⁡ ⁡… ⁡⁡1

𝛽𝑓𝑐
1,1 … 𝛽𝑓𝑐

1,𝑛𝑁

⋮ … ⋮

𝛽𝑓𝑐
𝑛𝐼,1 … 𝛽𝑓𝑐

𝑛𝐼,𝑛𝑁
]
 
 
 
 
 
 

             (A5) 

and thus with: 

 

𝚺𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 =⁡⁡ [
𝚺𝑐𝑜𝑟𝑒 𝚺𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐

𝑐𝑜𝑟𝑒,𝑓𝑢𝑛𝑑

𝚺𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐
𝑐𝑜𝑟𝑒,𝑓𝑢𝑛𝑑 ⊤

𝚺𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐
𝑓𝑢𝑛𝑑,𝑓𝑢𝑛𝑑

]       (A6) 

The fund specific variance–covariance matrix assumes that i) the specific risks of individual funds 

are uncorrelated with each other, and ii) also uncorrelated with the risks of core assets. This matrix 

is based only on the specific variance of funds relative to their benchmarks, 𝑣𝑎𝑟𝑓𝑏
𝑖 = (𝜎𝑓𝑏

𝑖 )
2
: 

 

𝚺𝑓𝑢𝑛𝑑⁡𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 =⁡

[
 
 
 
 
 
0 … 0
⋮ ⋱ ⋮
0 … 0

0⁡⁡⁡⁡ … ⁡⁡⁡⁡⁡0
⋮⁡⁡⁡⁡ 0 ⁡⁡⁡⁡⁡⋮
0⁡⁡⁡⁡ … ⁡⁡⁡⁡⁡0

0 … 0
⋮ ⋱ ⋮
0 … 0

𝑣𝑎𝑟𝑓𝑏
1 … ⁡0

⋮ ⋱ ⁡⋮
0 … 𝑣𝑎𝑟𝑓𝑏

𝑛𝐼
]
 
 
 
 
 

 

The uncertainty matrix 𝛀 is a 𝑛𝐴 ⁡× ⁡𝑛𝐴  matrix associated with the uncertainty in the expected 

returns and is an important input for the RPO process. Our choice for this matrix is: 

𝛀 =⁡𝛀𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 + 𝚺𝑓𝑢𝑛𝑑⁡𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐        (A7) 

Funds 

Core assets 

Funds 

Core assets 

Core assets 

Funds 

Core assets 

Funds 

Core assets 

Funds 

Core assets 
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where: 

𝛀𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 =⁡𝜷𝑎𝑙𝑙diag(𝚺𝑐𝑜𝑟𝑒)𝜷𝑎𝑙𝑙
⊤         (A8) 

is consistent with the choice of Yin et al. (2022) to use a diagonal uncertainty matrix with the 

variances of the assets for which we express our tactical views. However, while a diagonal 

uncertainty matrix remains appropriate for core assets, we cannot ignore the correlations between 

funds and core assets. These correlations are essential for translating tactical views on core assets 

into effective allocations across funds, which is why the additional 𝚺𝑓𝑢𝑛𝑑⁡𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 term in equation 

(A7) is needed. This extension, proposed by Mallouli et al. (2025), illustrates a setting where the 

uncertainty matrix should not be diagonal. The resulting uncertainty matrix is therefore: 

 

𝛀𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 =⁡⁡ [
diag(𝚺𝑐𝑜𝑟𝑒) 𝛀𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐

𝑐𝑜𝑟𝑒,𝑓𝑢𝑛𝑑

𝛀𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐
𝑐𝑜𝑟𝑒,𝑓𝑢𝑛𝑑 T

𝛀𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐
𝑓𝑢𝑛𝑑,𝑓𝑢𝑛𝑑

]       (A9) 

VII. Appendix C 

Here we show how to extend the frameworks of Sections II.A and II.B to include a term with 

aversion to turnover, something often used by quantitative managers in the industry. We consider 

first the simplest case where equation (2) includes a quadratic turnover penalty term: 

max⁡
𝒂

(𝝁⊤𝒂 − 𝜆(𝒂⊤𝚺𝒂) − TC ∥ 𝒂 − 𝒂𝑡=0 ∥2
2)       (A10) 

with TC a measure of the estimated transaction costs scaled by an aversion to turnover, 𝒂𝑡=0 the 

current allocation and subject to constraint 𝑩⊤𝒂 = 𝒃. It is not difficult to show that if we define: 

𝚺̃   ≡   𝚺   +   
TC

𝜆
 𝐈          (A11) 

𝝁̃   ≡   𝝁   +   2TC 𝒂𝑡=0         (A12) 

then the first order conditions and all closed form expressions in Section II.A remain valid under 

substitution of 𝝁 by 𝝁̃ and 𝚺 by 𝚺̃.  

For RPO, equation (14) becomes: 

max⁡
𝒂

(𝝁⊤𝒂 − 𝜆(𝒂⊤𝚺𝒂) −   𝜅√𝒂⊤𝛀𝒂 − TC ∥ 𝒂 − 𝒂𝑡=0 ∥2
2)     (A13) 

and it is easy to demonstrate that all closed equations in Section II.B remain valid under the 

substitution of 𝝁 by 𝝁̃ and 𝑸 by 𝑸̃ defined by: 

𝑸̃(𝑡) ≡ 2𝜆 𝚺 +  
𝜅

𝑡
 𝛀 + 2TC 𝐈         (A14) 

If we replace the quadratic turnover penalty with an ℓ1 turnover penalty, then we obtain instead:  

max⁡
𝒂

(𝝁⊤𝒂 − 𝜆(𝒂⊤𝚺𝒂) − TC‖𝒂 − 𝒂𝑡=0‖1)       (A15) 

Funds 

Core assets 

Funds 

Core assets 
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subject to constraint 𝑩⊤𝒂 = 𝒃  and where  ∥ 𝒙 ∥1= ∑ ∣𝑖 𝑥𝑖 ∣  measures total turnover from the 

current allocation 𝒂𝑡=0. The problem is convex and admits a unique optimal solution when 𝚺 is 

positive definite and 𝑩 has full column rank. 

Because of the kink in the norm ℓ1 of 𝒂 − 𝒂𝑡=0 at 𝑎𝑖 = 𝑎𝑡=0,𝑖 and the consequent change of sign 

in the derivative of ‖𝒂 − 𝒂0‖1 with respect to 𝒂 for 𝑎𝑖 > 𝑎𝑡=0,𝑖 when compared with 𝑎𝑖 < 𝑎𝑡=0,𝑖, 

the first order KKT condition in 𝒂 becomes: 

𝝁 − 2𝜆 𝚺𝒂 − 𝑩𝜹 − TC 𝒔 = 0         (A16) 

with 𝒔 defined as 𝑠𝑖
⋆ = sign(𝑎𝑖

⋆ − 𝑎𝑡=0,𝑖) and an arbitrary 𝑠𝑖
⋆ if 𝑎𝑖 = 𝑎𝑡=0,𝑖, which for convenience 

we can set to any number in the range [−1,+1], with this choice having no impact: 

𝑠𝑖 = {

+1, 𝑎𝑖 > 𝑎𝑡=0,𝑖,

[−1,+1], 𝑎𝑖 = 𝑎𝑡=0,𝑖,

−1, 𝑎𝑖 < 𝑎𝑡=0,𝑖.
        (A17) 

If we define the ℓ1-shrunken unconstrained portfolio: 

𝒂(0)(𝒔) ≡
1

2𝜆
 𝚺−1 (𝝁 − TC 𝒔)         (A18) 

for any fixed sign vector 𝒔, then, repeating the algebra (10) to (13) with 𝝁 replaced by 𝝁 − TC𝒔 
yields the same constrained solution structure: 

𝒂(𝒔) = 𝒂(0)(𝒔) − ∑
1

2𝜆
𝚺−1𝑩𝑘𝛿𝑘

𝑚

𝑘=1
(𝒔))       (A19) 

with the multipliers 𝛿𝑘(𝒔) jointly determined by the linear equation: 

(𝑩⊤𝚺−1𝑩)𝜹(𝒔) = 2𝜆(𝑩⊤𝒂(0)(𝒔) − 𝒃)        (A20) 

Equations (A18), (A19) and (A20) are exact for the given 𝒔. In its final form, the optimal sign 

vector 𝒔⋆ is the one derived from the resulting optimization solution 𝒂(𝒔⋆). However, 𝒔⋆ is not 

known ex-ante. Under ℓ1 we must first solve for 𝒂⋆, then identify 𝒔⋆, and then plug 𝒔⋆into (A18), 

(A19) and (A20) to obtain a decomposition similar to (10) to (12), i.e., an unconstrained 𝒂(0)(𝒔⋆) 
plus one correction per constraint.  

To solve the optimization problem numerically we can re-write it as: 

max⁡
𝒂,𝝉

𝝁⊤𝒂 − 𝜆 𝒂⊤Σ𝒂 − TC 𝟏⊤𝝉

s.t. 𝒂 − 𝒂0 ≤ 𝝉, −(𝒂 − 𝒂0) ≤ 𝝉, 𝑩⊤𝒂 = 𝒃, 𝝉 ≥ 0
     (A21) 

The solver returns the unique optimal active portfolio 𝒂⋆, the Lagrange multipliers 𝜹⋆ for 𝑩⊤𝒂 =
𝒃, and the multipliers for the turnover, which encode the sub-gradient signs of 𝒔⋆. From these 

outputs one recovers the optimal sign vector 𝒔⋆ by using 𝒂⋆ in (A17). 

The ℓ1  penalty inserts a data-driven threshold TC in the returns vector. Assets with weak returns 

relative to TC stay at 𝑎𝑡=0,𝑖 (no trade) while large returns in absolute terms flip 𝑠𝑖
⋆ to +1 or −1 

respectively depending on the sign of the returns, producing sparse and intuitive trades. The 

hedging portfolios for the constraints remain the same minimum variance style sub-portfolios as 

with the interpretation of (12).  
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For the RPO problem under ℓ1 turnover constraint we have: 

max⁡
𝒂

(𝝁̃⊤𝒂 −
1

2
𝒂⊤𝑸(𝑡)𝒂 − TC  ∥ 𝒂 − 𝒂0 ∥1)      (A22) 

subject to 𝑩⊤𝒂 = 𝒃 and with the same robust 𝑸(𝑡) as in (18). For a fixed 𝒔, the unconstrained 

robust portfolio is: 

𝒂(0)(𝑡, 𝒔) = 𝑸(𝑡)−1 (𝝁̃ − TC 𝒔)         (A23) 

and the constrained solution is equivalent to (21): 

𝒂⋆(𝑡, 𝒔) = 𝒂(0)(𝑡, 𝒔) − 𝑸(𝑡)−1𝑩(𝑩⊤𝑸(𝑡)−1𝑩)−1 (𝑩⊤𝒂(0)(𝑡, 𝒔) − 𝒃)   (A24) 

with multipliers from: 

(𝑩⊤𝑸(𝑡)−1𝑩)𝜹(𝑡, 𝒔) = (𝑩⊤𝒂(0)(𝑡, 𝒔) − 𝒃)        (A25) 

As before, 𝒔⋆ must be determined numerically by solving the RPO first, but now with 𝑸(𝑡). Then 

the decomposition follows by using 𝒔⋆ into (A24) and (A25). The structure of the results in II.B 

remains unchanged replacing 𝝁 by 𝝁 − TC𝒔⋆. 
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