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1. Introduction

The construction of tactical asset allocation (TAA) portfolios in institutional investment practice
presents a host of practical challenges that are often under-appreciated in academic literature.
While strategic asset allocation (SAA) and TAA views are typically formulated in terms of
traditional core indices representing broad asset classes, the actual implementation of TAA must
be carried out using investment funds, often using a mix of active and passive funds. Not only may
these funds have benchmarks that differ from the indices used for SAA and TAA views, but active
funds also introduce additional sources of alpha and idiosyncratic risk. This mismatch between the
benchmarks used to express investment views and evaluate performance, and the actual investable
universe, complicates the translation of allocation decisions into portfolios that are not only
implementable and robust, but also transparent and faithful to the original investment views.

Further complicating matters, TAA portfolios must adhere to a range of constraints, such as
restrictions on leverage and short positions, as well as the requirement to remain fully invested.
Additional complexity arises because investment views are usually not internally consistent with
the correlation structures assumed in risk models, rendering traditional mean-variance
optimization (MVO) approaches ineffective or even unusable for TAA construction. Moreover,
tactical views are frequently difficult to express as precise numerical expected returns and may not
be available for all assets in the investable universe. These realities underscore the need for
portfolio construction frameworks that are robust to estimation errors and portfolio constraints,
and that can accommodate incomplete, qualitative, or inconsistent investment views in a
transparent and explainable manner.

In response to these challenges, this paper introduces a framework that brings full transparency to
the portfolio optimization process by enabling an explicit attribution of each fund’s allocation in
the TAA portfolio to its underlying determinants: the SAA used for performance evaluation, the
tactical investment views, the expected fund alphas adjusted for ongoing costs, and the binding
constraints. We propose a rigorous analytical framework and provide linear decompositions that
allow practitioners to systematically trace and interpret the origin of each weight in the final
constrained TAA portfolio. Having detailed step-by-step explanations of how the optimizer
operates and, specifically, how it constructs each portfolio weight from these building blocks, is
crucial for establishing trust in the optimizer, especially among stakeholders with lower appetite
for quantitative methods.

Beyond transparency, the proposed framework provides clear and tangible evidence of the notion
of value for money. By decomposing each allocation into economically interpretable components
and linking them to realized constraints and costs, the framework shows how client value is created
(or eroded) at the margin, thereby offering verifiable proof of value for money in terms both of
design and of explanation. This strengthens accountability and enables portfolio managers to
clearly articulate and rigorously justify portfolio outcomes to stakeholders, regulators, and clients.



We begin by recalling the derivation of the basic framework in the context of MVO. We then
extend the application of the framework to the case of robust portfolio optimization (RPO).
Building on the foundational work of Lobo et al. (1998) and Ben-Tal and Nemirovski (1998), RPO
addresses the issue of estimation error in portfolio inputs by seeking allocations that remain
effective under worst-case deviations. Subsequent developments, including the two-step max—min
formulation of Tiitiincii and K6nig (2004), the quadratic error structure of Ceria and Stubbs (2006),
and the proportional error-covariance approach of Scherer (2006), have further enhanced the
tractability and interpretability of robust solutions. More recently, Heckel et al. (2016)
demonstrated across a variety of (RPO) formulations that, as uncertainty in expected returns
increases, robust portfolios interpolate between the mean-variance optimal allocation and various
risk-based allocations, with the specific risk-based approach depending on the RPO formulation
used.

Recent contributions by Issaoui et al. (2021) have adapted RPO frameworks to the realities of SAA
and TAA, providing practical guidelines for uncertainty calibration and the integration of
qualitative investment views. These frameworks have been further extended by Somefun et al.
(2022) to accommodate core-satellite portfolio approaches and thematic investments, and by
Mallouli et al. (2025) to the construction of TAA portfolios using active and passive funds while
accounting for ongoing fund charges and tracking error constraints. However, none of these works
provides the analytical framework capable of decomposing the optimized portfolio into its
underlying drivers, allowing each portfolio weight to be explained by contributions from the
impact of the original tactical investment decisions, the expected fund alphas, the mismatch
between core indices and funds used for implementation, and the myriad of portfolio constraints.

The main contribution of this paper is to extend the linear decomposition of the constrained mean—
variance solution, where the optimized portfolio is expressed as the sum of the unconstrained
solution and constraint-specific corrections, to the RPO setting proposed by Issaoui et al. (2021),
and further adapted by Mallouli et al. (2025) for allocations across active and passive funds. We
show that the decomposition remains valid when the covariance matrix is replaced by its
robustified counterpart and, crucially, when optimization is anchored on implied returns derived
from an unconstrained tactical portfolio, thereby accommodating qualitative TAA views. This
extension renders state-of-the-art robust TAA optimization fully transparent and explainable.

We develop the decomposition in several stages from theory to practical use cases: first, we
recapitulate the linear decomposition for MVO with constraints; next, we generalize this result to
RPO, introducing the robustified covariance matrix; then, we extend the framework to the practical
case where the optimization is based on implied returns derived from an unconstrained tactical
portfolio built from a selection of qualitative tactical views on individual asset classes; we then
address the case where the asset universe is split between investable and non-investable assets,
reflecting the realities of implementation using funds which do not necessarily match the core
indices used for SAA and TAA investment views; and finally, we propose the decomposition of
the weights of the TAA portfolio into contributions from an SAA replication, the investments
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views, and the different portfolio constraints including the funding constraint, constraints on the
maximum and minimum weights of funds in the final portfolio, and other typical linear constraints,
e.g., on environmental, social and governance (ESG) scores.

We further refine the framework to enhance its practical utility, showing how to include a more
useful normalization of contributions and to explicitly separate the contributions from investment
views into contributions from tactical views and from expected fund alphas. Finally, we propose
an enhancement of the approach showing how to dispatch the sub-portfolios from maximum and
minimum weight constraints back to their underlying sources, which is useful when these
constraints merely offset large unconstrained tilts. This adjustment ensures that the decomposition
remains interpretable even in the presence of strong offsetting effects, preserving transparency in
cases where binding constraints would otherwise obscure the true drivers of the optimized
allocation.

In the Results section, we demonstrate the framework using a TAA case study benchmarked to an
index-based SAA. Using real-world funds, we show how the optimized portfolio can be broken
down into an exact sum of intuitive sub-portfolios, each reflecting a distinct investment rationale
as described above. We also examine the impact of imposing a minimum allocation to Sustainable
Investments, highlighting how the decomposition makes the constraint’s effect explicit while
maintaining the transparency of the overall optimization process.

By providing a transparent, robust, and analytically tractable decomposition of TAA portfolios,
our framework bridges the gap between quantitative optimization and the practical demands of
professional asset managers and investors. By applying it to the most advanced approaches to TAA
portfolio optimization, it enables practitioners and investors to construct portfolios that are not
only robust to estimation errors and portfolio constraints, but also fully explainable in terms of the
underlying investment views and the constraints that drive their construction.

II. Materials and methods

Consider an investment universe 4 with n, financial assets divided into investable assets /7, active
and passive funds in our case, and non-investable assets V, i.e., core indices.

In the remainder of this document, 4 denotes vectors and matrices spanning the full universe of
financial assets, investable and non-investable. All other vectors and matrices are restricted to
investable assets only, i.e., the active and passive funds.

Given the optimal portfolio allocation to active and passive funds, wraa, the objective of this paper
is to come up with a linear decomposition:

Ncriteria

WraA = Lij=1 WTAAi (1



where each sub-portfolio wrpp; captures the impact of each criterion i used in the portfolio
construction problem. The sum of all sub-portfolios equals exactly the optimized portfolio Wrp,.
Hence, this decomposition should enable a transparent attribution of the final portfolio weights to
the underlying criteria used.

In our TAA problem, we start from a SAA portfolio defined on non-investable core indices, and
we express tactical views on a subset of these indices, reflecting the convictions from an
investment committee. However, the final TAA portfolio must be implemented using only funds
from a pre-selected list of passive and active funds, where the active funds are chosen specifically
for their expected positive alpha. Our objective here is to construct a TAA portfolio that faithfully
integrates the SAA, the tactical views on core indices, the expected alphas of the selected funds,
and the impact of all portfolio constraints, including weight bounds, linear constraints such as ESG
score requirements, and the full-investment constraint.

In Table 1, we summarize the type of output we seek. This table consolidates the results illustrated
later in Table 7. For each fund, the final TAA portfolio weight is exactly decomposed into the sum
of its weights across several sub-portfolios: (i) replicating the SAA using the available funds (SAA
Min TE); (ii) reflecting the tactical allocation views (Views); (iii) tilting towards funds with higher
expected alpha after fees (Alpha); (iv) capturing the impact of constraints such as sustainability
requirements (Constraints); and (v) ensuring that the final portfolio remains fully invested
(Funding). In the sections that follow, we build this decomposition step by step, ultimately relying
on an RPO framework.

Table 1: Target output decomposition of a given TAA portfolio

Portfolio Weights
TAA SAAMITE Views Alpha _ Constraints  Funding
30% Minimum

Allocation to

Sustainable

Investments
Equity Europe Mid-large Active Fundamental 2.1% 2.7% 1.0% 1.5% -3.2% 0.1%
Equity Europe Mid-large Passive Index 25.9% 17.5% 6.2% -1.6% 3.8% 0.0%
Equity USA Growth Active Fundamental 6.4% 4.7% 0.0% 0.6% 0.7% 0.3%
Equity USA Mid-large Passive Index 4.8% 8.0% 0.0% -0.6% -2.3% -0.2%
Equity Japan Mid-large Active Fundamental 5.5% 4.7% 0.6% 0.6% -0.2% -0.2%
Equity Japan Mid-large Passive Index 6.1% 5.4% 0.7% -0.5% 0.7% -0.2%
Equity Emerging Mid-large Active Fundamental ~ 4.4% 2.9% 0.9% 0.7% -0.1% 0.0%
Equity Emerging Mid-large Passive Index 5.4% 4.5% 1.6% -0.6% -0.2% 0.1%
Bonds Global Aggregate Active Fundamental 0.0% 18.4% -12.1%  0.6% -3.8% -3.1%
Bonds EUR IG Active Fundamental 0.0% 4.6% 0.0% 3.3% -6.8% -12%
Bonds EUR IG Passive Index 28.4% 11.3% 11.9%  -3.6% 10.3% -1.5%
Bonds USD IG Passive Index 11.0% 15.4% -52%  -0.4% 1.1% 0.2%
Portfolio Weight Sum 100.0% 100.0% 5.7% 0.0% 0.0% -5.7%

Notes: IG: Investment Grade. Sustainable Investment allocation is calculated from each fund’s minimum
exposure in Table A2. The results are based on the example in Table 8.



ILLA. Linear decomposition of mean-variance optimization solution

The MVO tactical active portfolio @ = wppap — Wgaa can be found by solving:
max (u"a — A(a"Za)) ()

with u"a the expected active return, Va' Xa the tracking error and given A > 0 the risk aversion.
The unconstrained solution to (2) is well known and given by:

0 = Lly-1
a S M 3)
Now let us see the impact of adding multiple linear constraints:
B'a=1b 4)

where B is an ny X m matrix with the constraint vectors in columns and b is an m vector with the
required matching values.

The zero-sum constraint arising from the fact that both wpss and wgps are fully invested
portfolios can be written as one of such constraints by taking one column of B to be 1 (the ny-
sized vector with all coefficients set to 1 and the corresponding b = 0. Examples of constraints
that fit this form include not only this zero-sum constraint, 17a = 0, but other typical constraints
such as imposing country ¢'a = 0 or sector, s'a = 0, neutrality, or targeting a given active
exposure on some characteristic q of the underlying assets q"a = q,.

With the vector of Lagrange multipliers & = [y, ..., 8,,] T, the Lagrangian for all these constraints:
L(a,8) =p"a—1a"Za—-86"(B"a—b) %)
Applying first order conditions in a results in:

p—21Za—B&5=0 (6)

which when solved for a produces a linear decomposition of the portfolio into the sum of the
unconstrained portfolio and terms with the Lagrange multipliers (Grinold and Khan (2000), Boyd
and Vandenberghe (2004), Meucci (2005)):

_Ls1u-Bs
a=n= "

= (0) — L -1
a ” X 'Bé (7)
enforcing the constraints B"a = b:

B'a® - —B"X'B5=b (8)



and then solving for & leads to:

§=21(B"2'B)"Y(B"a® - b) 9)
which when plugged back into (7) results in:

a*=a® -3 B (B2 'B)"* (B"a® — b) (10)

If we write the constraint matrix in column format as a collection of vectors B = [By, ..., B;;] then
B"a = b is equivalent to Bja = by and applying the Karush-Kuhn-Tucker (KKT) conditions
allows us to re-write (7) as:

. 1o
a*=a® ——X7 ¥l BySy (11)

which is an explicit sum of the unconstrained portfolio and one correction term per constraint:

mogq
a =a® — E —X"'B,5; (12)
k=124

with the multipliers J§; jointly determined by the linear equation:
(B':27'B)6 = 2A(B"a® — b) (13)

In the Appendix C we extend the framework to include turnover penalties.
I1.B. Linear decomposition using robust portfolio optimization solution

Here we repeat the exercise for the more general case of RPO formulated as (e.g. Ceria and Stubbs
(2006)):

max (u'a — 21a"Za — kWaTQa) (14)
a

subject to constraints B' a = b as before and where  is the uncertainty matrix of returns and k is
the aversion to uncertainty in returns.

Common choices for the uncertainty matrix include specifications proportional to the identity
matrix, to a diagonal matrix built from estimated asset variances, or to the full variance—covariance
matrix X. Heckel et al. (2016) analyzed the properties of the optimal solution to equation (14)
under both low- and high-uncertainty regimes for these different forms of Q. More recently, Yin
et al. (2020) and Mallouli et al. (2025) provided theoretical background and empirical justification
for why an uncertainty matrix proportional to the diagonal matrix of estimated asset variances is
often the most appropriate choice for standard portfolio optimization problems.

The presence of the square-root term makes the problem non-quadratic, so it is no longer possible
to proceed as above. However, we can recover a similar algebraic structure by introducing one
scalar auxiliary variable to make the problem quadratic again, with a modified covariance,
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conditional on that scalar (Boyd and Vandenberghe (2004), and Ben-Tal, El Ghaoui and
Nemirovski (2009)).

For that, we can use the identity which is valid for any g = 0:

q = min (i + %) (15)

t>0
applying it to the uncertainty term:

—iVaTa = max [~ 5(“22 4 ¢)] (16)

t>0 t

Therefore, the RPO problem is equivalent to the joint maximization:

Ty _ T _ Kk T _ kK
Crlr'1?§<0 (u a Aa'Xa vl Qa > t) (17)

subject to constraints BT @ = b. At the optimum, ¢ will satisfy the condition t* = ,/(a*)TQa*.

Because the gradient of —1a"Xa is —2yXa, and the gradient of — % a'Qais — % Qa, we can now
introduce the modified variance covariance matrix defined for t > 0:

K

Q(t) =212 + - Q (18)
Then, dropping the constant — g t with respect to a in (17), the conditional problem becomes:

max (uTa — %aTQ(t) a) (19)

subject to the constraints BTa = b. With this, we recover the same structure as for the original
mean—variance constrained problem, but now with X replaced by Q(t), up to a scaling.

For a given fixed t > 0, and applying first order constraints, the unconstrained robust portfolio
satisfies:

a®@) = Q) 'n (20)
and the solution that satisfies the constraints BT a = b can be written in a form equivalent to (10):
a*(t) =a” () - Q(®) "B (BTQ(t)'B)™ (BTa®(t) - b) (21)

As before, using the constraint matrix in column format B = [Bj, ..., B,;] and the Lagrange
multipliers § = [y, ..., 6] T, We recover an equation equivalent to (12):

a*(t) = a@ ) — Y7 (Q() B8 (1)) (22)



with a similar linear decomposition as before but with Q(t) replacing X, up to a scaling, and with
the multipliers §;, now jointly determined by the linear equation:

(BTQ(t)"'B)6 = (B"a® — b) (23)

In the Appendix C we show how to add turnover penalties to this framework.
I1.C. Linear decomposition when optimizing from tactical allocation implied returns

Practitioners often anchor their process on a pre-defined TAA portfolio because even the
unconstrained MVO solution based on expected returns is often highly sensitive to correlation
estimates. Small changes in pair-wise correlations of asset returns can lead to extremely large
changes in the overall allocations, and producing accurate enough expected returns is simply not
possible. While RPO can reduce correlation sensitivity, it does not solve the deeper challenge of
expressing views in the form of a numerical return forecast, particularly for assets outside the
practitioner’s scope of analysis. Consequently, starting from a pre-selected unconstrained TAA
portfolio often remains the preferred approach, even under RPO, as it provides a practical and
robust foundation that reflects strategic convictions without requiring explicit return estimates for
all assets. In such a case, optimization is still useful and required to change the portfolio so that it
meets all required constraints.

Issaoui et al. (2021) introduced a methodology for constructing unconstrained TAA portfolios
based on the observation that investment committees (IC) across the industry typically express
tactical views in terms of the anticipated direction and strength of bets for the assets under
consideration:

Sdirectional = (S(}irectionall 'Sgliquectional T (24)

A straightforward approach to constructing an unconstrained active TAA portfolio is to base
allocations directly on the directional scores that reflect the views of the investment committee.
Issaoui et al. (2021) proposes that such an unconstrained TAA portfolio assigns active weights
according to a risk budgeting methodology, ensuring that each view is represented proportionally
to its conviction and associated risk:

a(IC) = Sdirectional X (RB 0.—1) (25)

where 0 = (04, ..., 0, A)T is the vector of asset volatilities and RB denotes the total risk budget.

This formulation ensures that each directional view allocates a portion of the portfolio’s tracking
error proportional to its conviction and direction, according to:

RB-S; =al‘ o (26)

If, in Section I.A, we replace p with the implied returns i = 2A2a’®) obtained from the
unconstrained TAA portfolio in (25), then the first component, a'®), in equations (10) and (11) is
essentially a scaled representation of the original TAA active portfolio a’“). The second term
introduces the deviations required to enforce the specified constraints.

Conversely, in Section II.B, replacing p with the pseudo-implied returns ft = Qa{%), as suggested
by Issaoui et al. (2021) and with Q defined in (18), leads to a similar interpretation in equations
(21) and (22). The initial term again reflects a proportional version of the starting TAA portfolio,
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while the subsequent correction term incorporates the necessary tilts to satisfy the imposed
restrictions.

I1.D. Linear decomposition for practical application with tactical allocation to funds

In practical applications, the TAA portfolio must be fully invested in a selection of passive and/or
active funds, whereas both the SAA portfolio and the tactical investment views are typically
formulated using a universe of standard core asset class indices, many of which may not be directly
investable or may not even correspond exactly to the benchmarks of the selected funds. Moreover,
the selection of active funds is typically carried out by a team that is independent from the
investment committee. These funds are added to the investable universe based on their expected
alpha, regardless of the tactical views expressed by the committee. As a result, the inclusion of
active funds is driven by their potential to generate excess returns, rather than alignment with
specific tactical positions.

This context creates several challenges for portfolio construction. The first is managing the
mismatch between the investable funds and the core indices used for SAA and investment views.
In practice, the goal is to build a portfolio invested exclusively in funds that most faithfully
represent the intended tactical views, while simultaneously satisfying all required constraints and
controlling tracking error risk relative to the SAA portfolio.

A second challenge is achieving the right balance between passive and active funds. This involves
accounting for the expected alpha generated by active funds, net of ongoing costs, and weighing
this against the expected excess returns implied by tactical investment views. Addressing this
trade-off is essential for constructing a portfolio that considers both sources of potential
outperformance. This issue was recently explored by Mallouli et al. (2025) in the context of RPO.
Here, we adopt their formulation to show how the linear decomposition framework can be adapted
to enhance transparency in a real-world fund allocation application.

In particular, we emphasize the attribution of deviations in the final constrained TAA portfolio to
four main sources: (i) the mismatch between the investable fund universe and the asset class
indices used for both the SAA and to express tactical views; (ii) the actual tactical investment
views, with a clear separation between contributions from tactical views and from active fund
expected alpha; (ii1) linear constraints, such as those imposing maximum and minimum allocations
to each fund; and (iv) the funding constraint, which ensures that the TAA portfolio remains fully
invested.

Consider an investment universe of n;,; assets. Let N be the subset of the non-investable assets,
1.e., the asset class indices used for SAA and for expressing tactical investment views. Let I be the
subset of investable assets, which is the selection of investable funds, including active and passive
funds. Let the A exponent in vectors and matrices below refer to the full investment universe with
all the I investable assets and all the N non-investable assets. Matrices and vectors below without
this exponent span only the selected investable funds in I.

. C. A . Wsaa
With these definitions, let Wiy, = 0

to non-investable assets, i.e., with zero allocation to the investable funds. The construction of a

] be a fully invested SAA portfolio that allocates only

. . 0 . . .
tactical portfolio Wi, = [w ], composed only of investable funds and with zero allocation to
TAA
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all non-investable assets, and with a? = w#,,—wé,,, can be formulated as the following RPO
problem where:

%ﬁf @ENHTat — A(a?)"z4at — K\/W (27)
subject to the linear constraints:

1wh, =1 (28)
WisaL = Winini o= 1,1y (29)
Wisa; S Wingxir 0= 1,0,y (30)
Wian; = 0ifi EN 31)
(Whaa) 0% > Ominj j =1, ..,n¢ (32)
(Wian) 0% < O j =1, ..,mc (33)

where (28) is the funding constraint, (29) and (30) set the minimum W;;’Lin,l- and maximum and
Winax.; Weights allowed for the asset 7, and (31) are the constraints that restrict the allocation of the
portfolio to selected funds only. 047 is the vector with the asset values of a given characteristic j
used to create linear constraints and (W%AA)TOAJ represents the value of the portfolio for that
characteristic while 0{3”-”, ; and Of;ax, ; In equations (32) and (33) are the maximum and minimum
values, respectively, that bound the portfolio value.

As proposed by Mallouli et al. (2025), the implied returns spanning all assets, i, are calculated
so as to render the tactical active portfolio selected by the investment committee a’® efficient
under (27) plus the independent expected fund alphas ey, net of ongoing costs:

QAGAC)
/(aA(IC))T QaAdo

is a vector spanning all assets with the tactical portfolio from the

— 1
pt = 2A24a400 + + )—/a}“b (34)

where a4U© = [a(m)]
0

: : 017. : .
investment committee, af, = is a vector spanning all assets with the expected net alphas
f afb

for each fund relative to their respective benchmark, and 1/y can be interpreted as an overall
confidence in the expected fund alphas.

In the appendix we provide more information about the choice of covariance matrix £4 and the
uncertainty matrix 24 spanning all non-investable assets in N and all funds in I, as well as the
choices of risk aversion A, aversion to uncertainty x and confidence in fund alphas y.

Since the weights of the non-investable assets in W, are set to zero, we can re-write (27) as:

max (f+ 22 Wipp) T Wrap — AWTanZWras — Ky (@) TQ4aA (35)

wTaAA

WTAATl =1 (36)

12



WTAA.i = Wmin,i ,i = 1, e, N (37)

WTAA.i < Wmax,i ,i = 1, e, N (38)
Wraa 07 = O ihj =1, ., (39)
Wraa "0/ < Oy i j = 1,.,m¢ (40)

where n; is the number of funds in I. Note that the returns vector is It + 2AZ{'wé, , where Z{! is the
submatrix of £4 obtained by removing the rows corresponding to non-investable assets. By
refining the problem, we have added the term 2AZ{'w§, , to the returns vector, which accounts for
how well the investable assets track the SAA allocation.

With Q# the submatrix of Q4 obtained by removing the rows corresponding to non-investable
assets, and noting that X is a positive definite symmetric matrix and  is at least positive
semidefinite and symmetric, the KKT theorem ensures the existence of a unique solution and
provides the following conditions:

e Stationarity:
Qfat

/(aA )TQAaA

2?21(5min,i - 6max,i) e; — Z?i1(£min,j - Smax,j)oj + Sfundingl =0 (42)

2ZWrpp + K — I — 22X Wi —

where 8¢y n4ing 1 the Lagrangian multiplier associated with the funding constraint (35),
Omini and &,4y; are the Lagrangian multipliers associated with the minimum and
maximum constraints applied to fund i, and e; and is the vector with zero everywhere
except for the fund i which equals 1. &y, ; and &p,4, ; are the Lagrangian multipliers
associated with the linear constraint on 0/.

e Primal feasibility:
1Twras = 1,
Wmin < WTaAA <= Winax
Ominj < Wraa 07 < Opgyj forallj=1,...,nc.

e Dual feasibility:
5min,i > 0, i = 1, o, Ny,
Smax,i > O,l = 1, Ny,
Eminj = 0,j =1,...,ng,
Emax,j = 0,j =1,..,n¢.

¢ Complementary slackness:
Smax,i(WTAA,i - Wmax,i) =0,i=1,..,n4,
Omini(Wraai = Wmin,) = 0,i=1,...,n,
Eminj(Wraa 0/ = Opmin i) =0,j =1,..,ng,
Emax,j(Wran'07 — Oy ) =0,/ =1, ...,nc.
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By factoring the stationarity condition, we get:

ﬂ1 wiaa — Ay, A
Wrap — K== — [l — 2AZ] W5pp —
, aA) Q4gA ] I( aA) QAgA
Z?;l(5min,i - Smax,i) e; — Z?i1(gmin,j - gmax,j)oj + 6funding1 =0 (43)

If we reintroduce the matrix Q4 defined in (18):

21 + kK —

QA
(a4 )TQ.A a4

Note that this matrix depends on the optimized weights of wé, , hence the stationarity condition
cannot give a closed-form solution. Still, and with Q# the submatrix of Q4 obtained by removing
the rows corresponding to non-investable assets, and with Q submatrix of Q4 with only columns
and rows for the investable assets, then, by replacing (44) in (43), the optimal portfolio is:

Q4 =2A%4 +k (44)

ny

Wraa = Q ” + QI WSAA + Z(Smlnl - max l) €; + Z(Smm] gmax])o 5fundmg1
j=

(45)
We thus recover the linear decomposition given in (22) for the example under consideration.
I1.E. Interpretation of the linear decomposition of a tactical allocation to funds
Equation (45) allows us to decompose the allocation to funds in the wy, into a sum of portfolios:

Wrtaa = Wsaa replication + Wieturns + W onstraints + qunding (46)

By introducing the following definitions:

Wsan replication = @ QfWiaa 47)
Wreturns= Q' 1 (48)
Weonstraints = Q@ Xty (Omini — Omax,i) € + Z}Zl(smm, i — €max,;)0’] (49)
Weunding = —Q "Srunaing1 (50)

WsaA replication €an be interpreted as the minimum tracking error portfolio that replicates

Wi, constrained to invest only in funds and constructed under uncertainty, i.e., using this new
matrix @ instead of the original full X.

W eturns 18 the fully unconstrained portfolio that maximizes the Sharpe ratio based on the implied
returns i, with Q replacing the original full £. This portfolio tilts away from the allocation
Wsaa replication O take advantage of the tactical investment views and alphas of the funds in f.
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Q le; is the minimum-variance portfolio that holds asset i with weight 1, and all other weights
are chosen to minimize total variance (i.e., to hedge the risk of asset i as much as possible), while
Q 10’ is the minimum-variance portfolio that achieves a unit exposure to the characteristic 0.
In this way, W onstraints 1S the sum of all such portfolios scaled to fulfil all max and min weight
constraints and all other linear constraints on 0.

Wrunding 1S the fully unconstrained minimum variance portfolio scaled by 8¢ynging. added or
removed so that the final portfolio will be forced to have weights adding to 1.

II.F. Towards a more practical linear decomposition

Equations (45) and (46) follow naturally from the framework in Sections II.A and I1.B. However,
it is possible to rearrange or regroup the terms in the decomposition, provided they still sum to the
final allocation w#,,, if an alternative breakdown offers greater clarity or is better suited for
interpreting the resulting portfolio. Here we propose some changes that, in our view, increase
transparency.

II.F.1 Minimum tracking error portfolio for SAA

The first concerns the term Wgaa repiication defined in equation (47). This portfolio is invested in
the available funds and seeks to replicate the SAA allocation to non-investable core indices but
still optimized using the matrix Q rather than the original full covariance matrix X. However, as it
is, this portfolio is not necessarily fully invested. Adding a constraint to ensure it becomes fully
invested enhances the transparency of the decomposition by transforming it into a more standard
minimum tracking error portfolio. To achieve this, we introduce the following new definition:

— 0 A
Wsaaminte = Q7' [Q1'Wépa + SminTr1]

= WsaA replication T Q_16min g1 (51)
with Wgaa minte Spanning only investable assets and with the Lagrangian:

1_(1TQ_1QAWA )
OminTE = 1TQ—111 SAA (52)

If we replace Wsaa repiication With Wsaa minTg 1n decomposition (46), we must adjust the funding
term in (50) by subtracting Q™ 8pi, 75 1. This correction ensures that the overall sum remains
consistent. The fully invested minimum tracking error portfolio serves as the new baseline for
constructing the fund allocation in Wy, while the remaining components in (46) introduce tilts
that reflect investment views and constraints.

II.F.2 Contributions from investment views towards the allocation

Here we focus on how to change the term w4, to render it more informative. This could be
done in different ways depending on how investment views are formulated. In the example above
where we use implied returns defined in (34), derived from a given unconstrained TAA active
portfolio built from individual views on each asset class and corrected with the expected net alphas
from funds, we can write those implied returns as:

— 1
”A — QAaA(IC) + ;“}41; (53)
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We can decompose the first term into a sum of individual views by splitting the portfolio a4(©

into a sum of the individual asset weights allocated to each non-investable asset:

a7 107 [ 0 7
0 a, 0
a1 =| |+ oL (54)
of o 0
Lol Lo Lo

which leads to:
— ny — 1
”A = Ziévl ”ﬁiews,i + )_/a]éb (55)

where fij;.,; are the implied returns for each asset in N calculated from the matrix Q rather than
the original full covariance matrix X, and derived from each individual allocation to non-investable
assets I in (54).

Because the final allocation is not allowed to be invested in the non-investable assets in N, we can
drop the rows for such assets in (55) and use the bottom of the vectors for investable assets in [
only in (48) for Wy.eyrns allowing us to decompose this portfolio into a sum of portfolios:

—n-1y" 17-1
Wieturns= @ Zii}l Hyiews,i T Y Q Arp
= 271:\]1 Wyiews,i T Wa = Wyiews T Wq (56)

The first term in (56) represents a sum of portfolios composed exclusively of investable assets.
Each portfolio is constructed to replicate the target allocation to each non-investable asset in (55),
derived from the investment views. This term gives insight into how each view on a non-investable
asset can be replicated using investable assets, with the replication constructed by minimizing
tracking error measured using the matrix Q instead of the original full covariance matrix X.

The second term, w,, corresponds to the allocation to investable assets that is optimal in the
absence of any investment views. It is determined solely by the expected alphas of investable
assets, adjusted for ongoing costs.

II.F.3 Normalization of contributions towards the allocation

In the problem at hand, wrp, is also constrained to be fully invested, i.e. portfolio weights add to
100%. Wgaa mintE 18 also fully invested. In the absence of other constraints and with gi, = 0, the
weights in W, derived from the investment views have to be compensated by weights in
Weunaing SO as to meet the funding constraints, i.e. that the final weights of wry, total 100%.

In this setting, W, 1s constrained to be fully invested, meaning that the weights add to 100%.
Wsaa mintE 18 also fully invested. When no additional constraints are imposed, and with @z, = 0,
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the weights in Wy, derived from the investment views, must be offset by weights in Weypnging
so that the final weights in wpa, sum to 100%.

To generalize to non-zero a&y;, and additional constraints, we introduce the definition of zero-sum
portfolio w; associated with portfolio w;:

Tw
1w]

w:

j=Wj—

qunding (5 7)

1-I-qunding

where 17w is the sum of weights of w and 1"Wyynaing the sum of weights of Weynging. This

definition will be useful below when formulating the final decomposition of Wy, in a form that
makes each term in the decomposition more useful in enhancing the transparency of the final
allocation obtained from the optimization problem.

II.LF.4 Decomposition with normalized portfolios
With the definitions introduced above, it is useful to re-arrange the decomposition in (46) as:
Wraa = WsaA minTE T Woiews T Wa + Weonstraines T qunding (58)

Here, Wgpa minte 18 fully invested, while W, and W,y strqints are zero-sum portfolios that adjust
asset weights without affecting the total portfolio sum. The final term, Wy p4ingy combines

Wrunding @s defined in (50) with the corrective term in (51), which accounts for replacing
WsaA replication With Wsaa minre, as well as all corrective terms in (51) arising from normalizing
W, and Wy nsrraints- 1he sum of weights of the terms in (58) is summarized in Table 2.

Table 2: TAA weights decomposed between relevant sub-portfolios.

Portfolio SAAMInTE | Views Alpha | Constraints | Funding
Sum weights 100% x% 0 0 -x%

The decomposition of the weights in (58) provides a clearer insight into the adjustments made by
the optimizer to implement the investment views while satisfying the funding constraint, as we
shall illustrate with the numerical examples.

I1.F.5 Dispatching offset contributions from weight constraints

While equation (58) offers a clear decomposition of the optimized portfolio into contributions from
SAA replication, investment views, alphas, constraints, and the funding adjustment, further
refinements may be helpful in practice. This is especially relevant when the effect of a constraint
nearly cancels out the impact of another effect with a large contribution, which can make it difficult
to discern the true drivers of the final allocation.

For example, consider a strong negative view on an asset that would, in the absence of constraints,
result in a substantial negative weight. If a long-only constraint is imposed, then the corresponding
sub-portfolio in (58) will very likely show a large positive weight on this same asset to bring it up
to zero or higher, effectively neutralizing the intended effect of the view (Green and Hollifield
(1992)). More generally, weight bounds and linear constraints can produce large contributions that
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offset other effects, particularly when the unconstrained solution would otherwise significantly
violate these bounds.

When such offsetting occurs, the decomposition may be dominated by large, opposing terms,
reducing its interpretability. If this arises because of individual constraints on the maximum and
minimum value of weights, then it can be useful to refine the decomposition by reducing the
number of sub-portfolios in (58) by redistributing at least some of these most extreme offsetting
contributions back on the criteria that caused it in first place. For instance, one may reallocate the
portion of the constraint sub-portfolio that neutralizes a view because it violates weight bounds
back on the view itself.

Here, we introduce a method for redistributing the impact of a given minimum or maximum
constraint on asset weights by reallocating its offsetting effect to the most relevant sources of the
allocation that violated it. This refinement ensures that the decomposition remains transparent and
meaningful, even when binding constraints significantly alter the unconstrained solution.”

Let D be a matrix obtained from W ,nstraines by keeping only the n, columns that are to be
dispatched onto the other sub-portfolios of (58). All columns of D must be associated with a
weight bound constraint and have at least one nonzero weight.

Note that not all columns in W ,ps¢rqines With large values should be dispatched. If a sub-portfolio
N Weonstraints SIMply comes about because of a regulatory constraint or some other specific
reason not related to replication of the SAA, views, alpha, or funding, then trying to dispatch may
Serve no purpose.

Now, let R be the concatenation into columns of all the ng sub-portfolios in (58) that have not
been chosen for D. Stacking both R and D into columns of a matrix M:

M = [R|D] (59)
The matrix M has all the sub-portfolios in the decomposition (58) and thus verifies:
MlTlR+TlD = WTAA (60)

where 1, ,p ) is the vector of size ng + np with all coefficients equal to 1. Our goal is to design
a np X ng matrix P that will project the portfolios D onto the same space as the R portfolios,
while staying relevant for the allocation explanation. We shall then compute a new n X np matrix
M = R + DP that will explain the optimizer choices using only the criteria that have been deemed
relevant. Because we still want M columns sum to equal wra,, P must verify:

P1,,=1,, (61)

Recall that for all i, 6,in; = 0 and 8,4, ; = 0. Moreover, the complementary slackness condition
implies that the only way for both these Lagrangian multipliers to be nonzero is Wy, i = Winax i
which happens when the i-#h asset weight has been set to a given value prior to the optimization.
There are three cases:

* Jagannathan and Ma (2003) proposed a different approach to deal with the long only constraints, based on modifying
the covariance matrix £ in mean-variance optimization. However, we find their method less adapted for the purposes
of this paper.
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- If 6mini > Omax,i: the unconstrained weight for asset i wants to be below the minimum
bound. The optimizer increases the asset’s effective return. The constraint pushes the
weight upward.

- If6mini < Omax,i: the unconstrained weight for asset i wants to be above the maximum
bound. The optimizer decreases the asset’s effective return. The constraint pushes the
weight downwards.

- If 8jmini = Omax,i: the constraint does not affect the optimizer and the column can be
dropped.

Based on these observations, the projection matrix P should increase weights of assets for which
Omin,i > Omax,i and lower the weights if 8,7, ; < Opmax,; in the relevant portfolios R. In both cases,
P should push the weights of the concerned assets towards the bound imposed on the portfolio it
must respect.

Let the np X (ng + np) matrix 4 be constructed row-by-row, where each row corresponds to an
asset whose constraint-related sub-portfolio is being dispatched, i.e., the assets appearing in matrix
D. Its purpose is to encode how the weights of the constraint portfolios D should be redistributed
across all sub-portfolios, both R and D, based on which constraints are binding and in which
direction.

For a given asset belonging to matrix D, we look at the corresponding row of M and apply the
following selection rules. For each asset i, we compare 6y, ; for the min-weight constraint with
the 8iax ; for the max-weight constraint. Then,

- For the case iy ; > Omax,; We keep only the negative coefficients from row i of M.
These are the sub-portfolios that try to decrease the weight.

- Forthe case 0pin ; < dmax i We keep only the positive coefficients from row i of M. These
are the sub-portfolios that try to increase the weight.

- For the case 6yip ; = Omax i then column of D can be ignored and is not used for A. We
drop this row.

After this, the A rows with nonzero sums are then divided by their sums, while the coefficients of

rows with zero sums are all set to so that we have:

TlR+TlD’
A = [Ag|Ap] (62)

In this way, each row in A is a vector of percentages, summing to 1, indicating how the
corresponding asset in D should be projected onto all the other columns of M = [R | D].

AlTLR-I-TlD = 1TlR (63)

Recall that multiplying D by A produces DA = [DAg|DAp]. This means that part of the weights
in D is dispatched to the relevant portfolios R (through DAg), while another part is redistributed
back into the constraint portfolios D themselves (through DAp). Because DA} feeds weights back
into D, the redistribution process becomes recursive and each time weights loop back into D, they
must again be projected onto R.
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To fully dispatch all the weights from D into R, we must therefore accumulate this entire recursive
sequence DA, + DApAp + DA2Ap + ---. This infinite series has a closed-form solution,
which leads us to define the projection matrix:

P =1, —A4,) Ag (64)

Here, I, 1s the identity matrix of size np. The inverse is well-defined because A¥ - 0ask —> oo,

This holds in practice since each row of Ap contains percentages whose row-sum is strictly less
than 1 as some weight has already been allocated to Ag.

Finally, having calculated P, we can construct the new matrix M:
M =R + DP (65)

Compared with the original decomposition M in (58), the new matrix M contains fewer columns,
since the sub-portfolios in D have now been dispatched onto the relevant components. Each
column of M represents a cleaner and more interpretable sub-portfolio. Together, these columns
provide a redefined and more transparent breakdown of the final portfolio wrpa. They still
correspond to the same drivers of the allocation (replication of the SAA, tactical views, fund
alphas, the funding constraint, and any remaining constraints that were not dispatched) while
removing the noise created by the offsetting constraint effects.

III. Results

In this section, we illustrate the implementation of the portfolio decomposition framework using
as an example the construction of a TAA portfolio benchmarked against an SAA portfolio. The
SAA allocates exclusively to core asset classes represented by core indices, while the TAA
portfolio is implemented using a mix of active and passive funds. This setting represents the
realities of portfolio management, where investment views tend to be formulated at the level of
broad asset-class indices, but implementation uses a set of imperfectly aligned investable funds.

All data sources and calculation details are documented in the Appendix. Table Al lists the core
indices used to construct the SAA portfolio and to define the TAA views. The table also reports
the SAA allocation itself, as well as the target active unconstrained TAA portfolio derived from
these views using the methodology described in Section I1.C.

Table A2 provides the characteristics of the funds selected for implementation, including the
minimum allocation to Sustainable Investments specified in their respective prospectus. This
information is required for the case in which we impose a constraint on the minimum allocation to
Sustainable Investments in the optimization.

In Table A3, we report each fund’s exposure to the core asset classes, estimated using Lasso
regressions as also explained in the Appendix. The table includes the associated R-squared and the
volatility of the regression residuals, which quantifies the degree of specific risk of each fund.

Finally, we assume that the active funds were selected based on the expectation that they generate
positive alpha beyond their systematic exposures to the core indices, with a target information ratio
of +0.5. For each fund, the expected alpha is thus calculated as the product of this information ratio
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with the fund specific volatility (the residual volatility from the Lasso regression), minus the
ongoing charges (OCR). These expected alphas net of OCR can also be found in Table A3.

The risk model is based on a principal components analysis (PCA) approach. The PCA risk factors
are constructed from the time series of returns of the core indices. We retain the first six
eigenvectors as risk factors. Together they explain 89% of the total return variance. The weights
of the core assets in each of these eigenvector portfolios are shown in Table A4 in the Appendix.

The optimization is performed as described in Section I1.D, using equation (45), where the implied
returns are calculated using (34), with, as inputs, the risk model and the unconstrained tactical
views constructed as in equation (25) and shown in Table Al in the Appendix.

In the Appendix, we provide full details on the construction of the risk model X and the uncertainty
matrix Q, both defined over the combined universe of core assets and funds.

The other inputs required for the optimization are the risk aversion parameter, A, the aversion to
uncertainty parameter, k, and the risk budget, RB, as well as the overall confidence in the expected
fund alphas, y. We have set RB = 2% and y = 15 and used 1 = (1/2) * (0.4/RB) and k =
0.23 * min (1, Zi|Siu-r| ) as proposed by Mallouli et al. (2025).

III.A No tactical views

We first consider the example in which the tactical views are muted, so that the optimizer simply
maximizes the net expected alpha of the fund allocation, tilting in favor of the funds with the
strongest positive net alpha and away from funds that have smaller or negative net alpha.
Increasing the parameter y increases the extent to which the portfolio tilts more in favor of funds
with positive net alpha. We apply only standard constraints: each asset weight must be
non-negative, must not exceed 100%, and the portfolio must be fully invested.

Table 3. Optimal TAA portfolio decomposition in the absence of tactical views

Portfolio Weights Fund
Exposure to
Sustainable Expected
TAA SAA Replication Alpha Constraints Funding Investments Net Alpha

Equity Europe Mid-large Active Fundamental 53% 3.2% 2.1% 0.0% 0.0% 30% 0.6%
Equity Europe Mid-large Passive Index 17.0% 19.7% -2.7% 0.0% 0.0% 40% -0.2%
Equity USA Growth Active Fundamental 5.2% 4.2% 0.9% 0.0% 0.0% 25% 4.0%
Equity USA Mid-large Passive Index 5.5% 6.2% -0.7% 0.0% 0.0% 0% -0.1%
Equity Japan Mid-large Active Fundamental 51% 4.1% 1.0% 0.0% 0.0% 30% 3.3%
Equity Japan Mid-large Passive Index 4.1% 4.8% -0.7% 0.0% 0.0% 40% -0.2%
Equity Emerging Mid-large Active Fundamental 4.4% 3.4% 1.0% 0.0% 0.0% 20% 3.0%
Equity Emerging Mid-large Passive Index 4.7% 5.7% -0.9% 0.0% 0.0% 20% -0.3%
Bonds Global Aggregate Active Fundamental 4.0% 3.1% 0.9% 0.0% 0.0% 20% 0.1%
Bonds EUR Aggregate Active Fundamental 0.0% 2.2% -2.2% 0.0% 0.0% 20% -0.2%
Bonds EUR Sovereign Active Fundamental 71% 1.3% 5.7% 0.0% 0.0% 20% 0.0%
Bonds EUR Sovereign Passive Index 19.8% 24.8% -5.1% 0.0% 0.0% 0% -0.2%
Bonds EUR IG Active Fundamental 3.9% 0.1% 3.8% 0.0% 0.0% 15% 0.8%
Bonds EUR IG Passive Index 0.0% 2.5% -2.5% 0.0% 0.0% 30% -0.2%
Bonds USD IG Passive Index 13.9% 14.6% -0.7% 0.0% 0.0% 25% -0.2%
Portfolio Weight Sum 100.0% 100.0% 0.0% 0.0% 0.0%

Tracking error 1.1% 1.1% 0.2% 0.0% 0.0%

Expected Net Fund Alpha 0.5% 0.3% 0.2% 0.0% 0.0%

Allocation to Sustainable Investments 21% 21% 0% 0% 0%

Notes: IG: Investment Grade. Sustainable Investment allocation is calculated from each fund minimum
exposure in Table A2. The tracking error of the TAA portfolio and the SAA Replication sub-portfolio is
measured relative to the SAA portfolio. For the Alpha sub-portfolios it is simply its volatility.
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Table 3 reports the decomposition of the TAA allocation according to equation (46), breaking the
final portfolio into its constituent sub-portfolios. The optimized TAA portfolio holds most funds
in the universe, with the largest positions in the Equity Europe Mid—Large Passive Index and the
Bonds EUR Sovereign Passive Index. These allocations are primarily driven by the SAA
replication component, which seeks to match the strategic exposures to core indices. However,
because both passive funds exhibit slightly negative net alpha, their final weights are reduced
relative to what a pure replication objective would prescribe. This adjustment is captured in the
Alpha sub-portfolio, which tilts toward funds with positive net alpha.

In this example, the SAA Replication portfolio is fully invested, and the Alpha portfolio naturally
emerges as zero-sum even without explicit normalization. This follows directly from the
optimization: none of the imposed constraints bind, so the solution meets all requirements without
additional constraint-driven adjustments.

The subsequent examples introduce non-zero implied returns derived from the tactical views. As
before, we impose only standard constraints: non-negative weights, no position above 100%, and
full investment. In the final example, we also add a minimum allocation of 30% to Sustainable
Investments to illustrate how such constraints can be captured by the decomposition.

II1.B Tactical views

Table 4 reports the results using the same decomposition as in equation (46), but now with tactical
views. In this case, several constraints are binding. The Constraints column aggregates the
adjustments required to enforce weight bounds. These are triggered by negative views that would
otherwise imply short positions. For example, the negative tactical view on the Bond EUR
Sovereign core index would push the optimizer to short the corresponding fund (Bonds EUR
Sovereign Passive Index), which would violate the long-only bounds; the constraint sub-portfolio
introduces the compensating correction.

Relative to Table 1, the influence of tactical views is now evident and explains additional
deviations from the SAA Replication portfolio. A positive view on Equity EMU generates an
overweight in the Equity Europe Mid-Large Passive Index fund; a negative view on Bond EUR
Sovereign produces a strong underweight in the Bonds EUR Sovereign Passive Index fund; and a
positive view on Bond EUR IG results in an overweight in the Bonds EUR IG Passive Index fund.
Two other views concern core assets without a direct fund proxy in the selected universe: the
positive view on Bonds USD HY ultimately tilts towards the Bonds USD IG Passive Index and
the Bonds EUR IG Passive Index funds, while the mildly negative view on Bond EMD HC induces
modest underweights in the same pair, reflecting their nearest-proxy roles.

In this example, the SAA Replication portfolio is only slightly short of full investment, and the
Alpha portfolio is close to but not exactly zero-sum. That will not always hold. When these
components deviate more materially from full-investment or zero-sum, respectively, the
decomposition can become harder to interpret, which motivates the normalizations introduced in
Sections II.F.1 and IL.F.3.

Finally, while the aggregate Constraints column in Table 4 remains interpretable, a further split
into the individual non-zero weight-bound corrections, as shown in Table 5, makes it less
transparent: although only three bounds are active, their separate contributions are not
straightforward to read. This is precisely the situation addressed by the dispatching procedure in
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Section II.F.5, which reallocates the most extreme weight-bound effects back to their underlying
drivers, preserving a cleaner explanation.

Table 4. Optimal TAA portfolio decomposition

Portfolio Weights
TAA  SAA Replication Views Alpha Constraints Funding
Equity Bond Bond Bond Bond
EMU EUR EUR USD EMD

Sovereign  IG HY HC
0.50 -1.00 0.50 0.50 -0.25

Equity Europe Mid-large Active Fundamental 52% 2.9% 0.8% 0.0% 0.0% 0.1% 0.0% 1.4% 0.0% -0.1%
Equity Europe Mid-large Passive Index 21.9% 17.7% 4.9% 0.0% 0.1% 0.9% -03%  -1.6% 0.2% 0.0%
Equity USA Growth Active Fundamental 5.6% 5.2% 0.1% 0.0% 0.0% 0.3% -0.1% 0.5% -0.1%  -0.2%
Equity USA Mid-large Passive Index 7.3% 7.5% 0.1% 0.0% 0.0% 0.4% -0.1%  -0.6%  -0.1% 0.2%
Equity Japan Mid-large Active Fundamental 5.7% 4.4% 0.1% 0.0% 0.0% 0.2% 0.0% 0.7% 0.1% 0.2%
Equity Japan Mid-large Passive Index 5.4% 52% 0.1% 0.0% 0.0% 0.3% 0.0% -0.5% 0.1% 0.2%
Equity Emerging Mid-large Active Fundamental ~ 4.5% 3.2% 0.0% 0.1% 0.0% 0.4% -0.3% 0.7% 0.3% 0.1%
Equity Emerging Mid-large Passive Index 5.6% 5.3% 0.1% 0.1% 0.0% 0.7% -0.5%  -0.6% 0.4% 0.0%
Bonds Global Aggregate Active Fundamental 3.2% 6.8% -0.1% -0.7% 0.0% -1.8% -0.6% 0.8% -3.6% 2.4%
Bonds EUR Aggregate Active Fundamental 0.0% 1.6% 0.0% -2.5% 0.8% 0.1% -0.1%  -51%  -43% 9.6%
Bonds EUR Sovereign Active Fundamental 0.0% 1.0% 0.0% -1.8% 0.0% -0.1% 0.0% 4.0% -3.6% 0.4%
Bonds EUR Sovereign Passive Index 0.0% 21.3% -0.1%  -37.0%  0.0% -1.8%  -02%  -0.5%  22.7%  -4.5%
Bonds EUR IG Active Fundamental 5.4% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 3.1% 0.0% 2.1%
Bonds EUR IG Passive Index 19.4% 3.9% 0.3% -02%  189%  5.8% -1.6% -1.7%  -3.0%  -2.9%
Bonds USD IG Passive Index 10.7% 12.6% 0.1% -0.5% 0.4% 3.4% -22%  -04%  -22%  -0.6%
Portfolio Weight Sum 100.0% 98.4% 6.3% -424% 204%  9.1% -5.9% 0.3% 6.8% 7.0%
Tracking error 2.2% 1.1% 0.1% 0.1% 0.1% 0.5% 0.2% 0.2% 0.5% 0.3%
Expected Net Fund Alpha 0.5% 0.3% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0%
Allocation to Sustainable Investments 28% 21% 2% -1% 6% 3% -1% 0% -4% 2%

Notes: 1G: Investment Grade, HY: High Yield, HC: Hard Currency. Sustainable Investment allocation is
calculated from each fund minimum exposure in Table A2. The tracking error of the TAA portfolio and the
SAA Replication sub-portfolio is measured relative to the SAA portfolio. For each view sub-portfolio, the
tracking error is measured against the portfolio that expresses the underlying view using core indices only.
For the Alpha, Constraints, and Funding sub-portfolios, the relevant risk measure is simply their volatility.

The sub-portfolios in Table 5 that correct for violations of weight bounds appear extreme because
they correspond to the unconstrained minimum-variance portfolios with unit exposure to asset i,
as can be seen from the structure of equation (49). In other words, when a weight bound is breached,
the optimizer effectively introduces the hedging portfolio that offsets the unwanted exposure as
efficiently as possible in variance terms, an inherently aggressive adjustment. Using the robustified
matrix Q instead of the traditional covariance matrix X is not enough adequate to attenuate this
effect sufficiently and the Q based minimum-variance hedging portfolios are still rather sensitive
to correlations of assets.

Even so, the sum of these constraint-related sub-portfolios is much easier to interpret. The
complete decomposition must add up exactly to the TAA portfolio, and the other components
(SAA Min-TE, Alpha, and Funding) tend to be far less extreme by construction. As a result, while
the individual constraint-correction portfolios can be difficult to interpret on their own, their
aggregate effect fits naturally into the overall decomposition and remains consistent with the
economic drivers of the final allocation.

Table 6 reports the decomposition of the same portfolio as in Table 4, but now (i) forcing the SAA
Replication portfolio to be fully invested (per equation (51)), (i1) normalizing the Alpha portfolio
to be zero-sum (per equation(57)), and (iii) dispatching the Constraint sub-portfolios (per
equation (65)).
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Table 5. Decomposition of constraints sub-portfolio in Table 3

Portfolio Weights
Constraints Constraints
Bonds EUR  Bonds EUR  Bonds EUR
Aggregate Sovereign Sovereign

Active Active Passive

Fundamental _Fundamental Index
Equity Europe Mid-large Active Fundamental 0.0% 0.0% 0.0% 0.0%
Equity Europe Mid-large Passive Index 0.2% 0.0% 0.0% 0.2%
Equity USA Growth Active Fundamental -0.1% 0.0% 0.0% -0.1%
Equity USA Mid-large Passive Index -0.1% 0.0% 0.0% -0.1%
Equity Japan Mid-large Active Fundamental 0.1% 0.0% 0.0% 0.1%
Equity Japan Mid-large Passive Index 0.1% 0.0% 0.0% 0.1%
Equity Emerging Mid-large Active Fundamental ~ 0.3% 0.0% 0.0% 0.2%
Equity Emerging Mid-large Passive Index 0.4% 0.0% 0.0% 0.4%
Bonds Global Aggregate Active Fundamental -3.6% -0.4% -0.1% -3.1%
Bonds EUR Aggregate Active Fundamental -4.3% 484.4% -21.7%
Bonds EUR Sovereign Active Fundamental -3.6% -15.2% 345.3%
Bonds EUR Sovereign Passive Index 22.7% 671.0%
Bonds EUR IG Active Fundamental 0.0% -0.8% 0.0% 0.7%
Bonds EUR IG Passive Index 3.0% SO s.6% 121.1%
Bonds USD IG Passive Index -2.2% -0.1% -0.1% -2.0%
Portfolio Weight Sum 6.8% 17.9% 1.1% -12.2%
Tracking error 0.5% 2.7% 2.8% 3.9%
Expected Net Fund Alpha -1.4% -0.4% 0.4% -0.1%
Allocation to Sustainable Investments 0% 55% 66%

Notes: 1G: Investment Grade. Sustainable Investment allocation is calculated from each fund minimum
exposure in Table A2. The tracking error of each view sub-portfolio is measured against the portfolio that
expresses the underlying view using core indices only. For the Constraints sub-portfolio, created as their
sum, it is just its volatility.

Table 6. Optimal TAA portfolio decomposition with normalization and dispatching of offsetting
constraints

Portfolio Weights
TAA  SAAMinTE Views Alpha  Funding
Equity Bond Bond Bond Bond
EMU EUR EUR USD EMD

Sovereign 1G HY HC
0.50 -1.00 0.50 0.50 -0.25

Equity Europe Mid-large Active Fundamental 52% 2.9% 0.8% 0.0% 0.0% 0.1% 0.0% 1.5% -0.1%
Equity Europe Mid-large Passive Index 21.9% 17.7% 4.9% 0.1% 0.1% 0.9% -03%  -1.5% 0.0%
Equity USA Growth Active Fundamental 5.6% 5.1% 0.1% 0.1% 0.0% 0.3% -0.1% 0.7% -0.4%
Equity USA Mid-large Passive Index 7.3% 7.5% 0.1% -0.1% 0.0% 0.4% -0.1%  -0.7% 0.3%
Equity Japan Mid-large Active Fundamental 5.7% 4.4% 0.1% 0.0% 0.0% 0.2% 0.0% 0.6% 0.4%
Equity Japan Mid-large Passive Index 5.4% 5.2% 0.1% 0.0% 0.0% 0.3% 0.0% -0.5% 0.4%
Equity Emerging Mid-large Active Fundamental 4.5% 3.2% 0.0% 0.1% 0.0% 0.4% -0.3% 0.8% 0.2%
Equity Emerging Mid-large Passive Index 5.6% 5.3% 0.1% 0.3% 0.0% 0.7% -0.5% -0.4% 0.0%
Bonds Global Aggregate Active Fundamental 3.2% 7.2% -0.1%  -3.1% 0.0% -1.9%  -0.6%  -2.3% 3.9%
Bonds EUR Aggregate Active Fundamental 0.0% 3.1% 0.0% -145% 0.8% -0.6%  -0.1%  -3.0% 14.3%
Bonds EUR Sovereign Active Fundamental 0.0% 0.9% 0.0% -5.9% 0.0% -0.3% 0.0% 5.7% -0.4%
Bonds EUR Sovereign Passive Index 0.0% 21.2% 0.0% -188%  0.0% -0.9%  -0.1% 2.4% -3.8%
Bonds EUR IG Active Fundamental 5.4% 0.5% 0.0% -0.8% 0.1% 0.0% 0.0% 1.9% 3.7%
Bonds EUR IG Passive Index 19.4% 3.3% 0.3% 1.4% 18.9% 5.9% -1.6% -4.0% -4.7%
Bonds USD IG Passive Index 10.7% 12.4% 0.1% -1.1% 0.4% 3.4% 22% -1.1%  -1.3%
Portfolio Weight Sum 100.0% 100.0% 6.3% -42.4%  20.4% 9.1% -5.9% 0.0% 12.5%
Tracking error 2.2% 1.1% 0.1% 0.3% 0.1% 0.5% 0.2% 0.2% 0.5%
Expected Net Fund Alpha 0.5% 0.3% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0%
Allocation to Sustainable Investments 28% 21% 2% -5% 6% 3% -1% -1% 3%

Notes: 1G: Investment Grade, HY: High Yield, HC: Hard Currency. Sustainable Investment allocation is
calculated from each fund minimum exposure in Table A2. The tracking error of the TAA portfolio and the
SAA Min TE sub-portfolio is measured relative to the SAA portfolio. For each view sub-portfolio, the
tracking error is measured against the portfolio that expresses the underlying view using core indices only.
For the Alpha and Funding sub-portfolios, the relevant risk measure is simply their volatility.

24



Under this normalization, the results for SAA Min-TE in Table 6 are very close to the SAA
Replication in Table 4, and the Alpha sup portfolios are also broadly consistent in the two tables.
The main differences are: first, the explicit Constraints columns are no longer present (their effects
have been dispatched to the relevant drivers); second, the Tactical Views sub-portfolio adjusts
accordingly. In particular, the previously negative view on Bond EUR Sovereign, which had
generated a violation of the long-only constraint, now appears less negative on the Bonds EUR
Sovereign Passive Index fund. Instead, part of the adjustment is reallocated as an additional
underweight in the Bonds EUR Aggregate Active Fundamental fund.

Overall, the zero allocation across these two bond funds is decomposed differently than in Table
4 yet remains economically consistent with those earlier results but now expressed without
resorting to the separate Constraint sub-portfolios and with clearer attribution to the view that
caused the adjustment.

II1.C Additional linear constraints

In the final case, in Table 7 we present the decomposition for the same example, now with an
additional linear constraint requiring a minimum allocation of 30% to Sustainable Investments in
the TAA portfolio. The breakdown follows the approach in Table 6: the SAA Min TE portfolio is
fully invested, the Alpha portfolio is normalized to be zero-sum, and weight-bound Constraint
portfolios are dispatched. However, we do not dispatch the Constraint sub-portfolio associated
with the sustainability requirement, as we wish to assess its magnitude and impact explicitly.

Table 7. Optimal TAA portfolio decomposition with normalization, dispatching of offsetting weight
constraints and contribution from a constraint on minimum allocation to sustainable investments

Portfolio Weights
TAA SAAMnTE Views Alpha Constraints _ Funding
Equity Bond Bond Bond Bond 30% Minimum Fund
EMU EUR EUR USD EMD Allocation to Exposure to
Sovereign  IG HY HC Sustainable Sustainable Expected
0.50 -1.00 0.50 0.50 -0.25 Investments Investments Net Alpha

Equity Europe Mid-large Active Fundamental 2.1% 2.9% 0.8% 0.0% 0.0% 0.2% 0.0% 1.5% -3.1% -0.1% 30% 0.6%
Equity Europe Mid-large Passive Index 25.9% 17.8% 5.1% 0.0% 0.0% 0.9% -03%  -1.6% 3.9% 0.0% 40% -0.2%
Equity USA Growth Active Fundamental 6.4% 5.1% 0.0% 0.0% 0.0% 0.3% -0.1% 0.6% 0.9% -0.5% 25% 4.0%
Equity USA Mid-large Passive Index 4.8% 7.5% 0.1% 0.0% 0.0% 0.4% -0.1% -0.6% -2.6% 0.3% 0% -0.1%
Equity Japan Mid-large Active Fundamental 5.5% 4.4% 0.0% 0.0% 0.0% 0.2% 0.0% 0.6% -0.4% 0.5% 30% 3.3%
Equity Japan Mid-large Passive Index 6.1% 52% 0.0% 0.0% 0.0% 0.3% 0.0% -0.5% 0.6% 0.4% 40% -0.2%
Equity Emerging Mid-large Active Fundamental ~ 4.4% 3.2% 0.0% 0.1% 0.0% 0.4% -0.3% 0.8% 0.0% 0.2% 20% 3.0%
Equity Emerging Mid-large Passive Index 5.4% 53% 0.0% 0.1% 0.0% 0.7% -0.5% -0.5% 0.2% 0.0% 20% -0.3%
Bonds Global Aggregate Active Fundamental 0.0% 72% -0.1% -1.0% 0.0% -1.7% -0.6% 0.0% -8.3% 4.4% 20% 0.1%
Bonds EUR Aggregate Active Fundamental 0.0% 2.7% 0.0% -228% 0.7% -1.0%  -0.1%  -13.2% 20.5% 13.3% 20% -0.2%
Bonds EUR Sovereign Active Fundamental 0.0% 0.3% 0.0%  -195% -0.1% -1.0% -0.1% -9.1% 32.6% -3.1% 20% 0.0%
Bonds EUR Sovereign Passive Index 0.0% 22.0% 0.0% -4.2% 0.0% -0.2% 0.0% 20.2% -36.8% -0.9% 0% -0.2%
Bonds EUR IG Active Fundamental 0.0% 0.5% 0.0% 0.2% 0.1% 0.0% 0.0% 3.4% -8.2% 4.0% 15% 0.8%
Bonds EUR IG Passive Index 28.4% 3.5% 0.2% 4.7% 19.7% 6.2% -1.6% -0.8% 1.0% -4.3% 30% -0.2%
Bonds USD IG Passive Index 11.0% 12.5% 0.1% -0.6% 0.2% 3.4% -2.2% -0.7% -0.3% -1.3% 25% -0.2%
Portfolio Weight Sum 100.0% 100.0% 6.3%  -431% 20.7%  9.2% -6.0% 0.0% 0.0% 12.9%

Tracking error 2.2% 1.1% 0.1% 0.2% 0.0% 0.5% 0.2% 0.2% 0.5% 0.5%

Expected Net Fund Alpha 0.4% 0.3% 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% -0.1% 0.0%

Allocation to Sustainable Investments 30% 21% 2% -7% 6% 3% -1% -4% 9% 2%

Notes: IG: Investment Grade, HY: High Yield, HC: Hard Currency. Sustainable Investment allocation is
calculated from each fund minimum exposure in Table A2. The tracking error of the TAA portfolio and the
SAA Min TE sub-portfolio is measured relative to the SAA portfolio. For each view sub-portfolio, the
tracking error is measured against the portfolio that expresses the underlying view using core indices only.
For the Alpha, Constraints, and Funding sub-portfolios, the relevant risk measure is simply their volatility.

Imposing the 30% floor materially reshapes the optimized TAA. The optimizer reallocates toward
funds with higher Sustainable Investments exposure and away from those with limited or no
sustainable content. Funds with stronger sustainability profiles absorb a larger share, as they are
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the most efficient vehicles to meet the requirement with minimal disruption to tracking error and
expected performance. Conversely, lower-Sustainable Investments funds are reduced, sometimes
to their lowest feasible levels, with the sustainability-constraint sub-portfolio recording the
necessary offsetting adjustments.

Through dispatching, the constraint interacts with the Views and Alpha components. View-driven
positions remain directionally consistent but are mildly attenuated to accommodate the
sustainability tilt. As with weight-bound corrections in Table 5, however, keeping the
sustainability Constraint sub-portfolio explicit can complicate interpretation; dispatching the other
constraints makes this interaction more visible in the Alpha term. The complexity is amplified for
funds in which the tactical views already push towards zero in Tables 3 and 5.

Two practical remedies are available. One is to revert to the simplified presentation used in Table
4, aggregating all constraint effects, including the sustainability floor, into a single Constraints
portfolio. The other, if the sustainability Constraint portfolio is to be shown explicitly, is to reapply
the framework to a reduced investable universe that excludes funds effectively set to zero by
tactical views. We report the results of the latter approach in Table 8 after removing the funds
Bonds EUR Aggregate Active Fundamental, Bonds EUR Sovereign Active Fundamental and
Bonds EUR Sovereign Passive Index.

Table 8. Optimal TAA portfolio decomposition with normalization, dispatching of offsetting weight
constraints, contribution from a constraint on sustainable investments on restricted fund universe.

Portfolio Weights

TAA  SAAMInTE Views Alpha _ Constraints  Funding
Equity Bond Bond Bond Bond 30% Minimum Fund
EMU EUR EUR USD EMD Allocation to Exposure to
Sovereign  IG HY HC Sustainable Sustainable Expected

0.50 -1.00 0.50 0.50 -0.25 Investments Investments Net Alpha
Equity Europe Mid-large Active Fundamental 2.1% 2.7% 0.8% 0.1% 0.0% 0.2% 0.0% 1.5% -3.2% 0.1% 30% 0.6%
Equity Europe Mid-large Passive Index 25.9% 17.5% 5.1% 0.5% 0.0% 0.9% -03%  -1.6% 3.8% 0.0% 40% -0.2%
Equity USA Growth Active Fundamental 6.4% 4.7% 0.0% -0.2% 0.0% 0.3% -0.1% 0.6% 0.7% 0.3% 25% 4.0%
Equity USA Mid-large Passive Index 4.8% 8.0% 0.1% -0.3% 0.0% 0.4% -0.1% -0.6% -2.3% -0.2% 0% -0.1%
Equity Japan Mid-large Active Fundamental 5.5% 4.7% 0.0% 0.3% 0.0% 0.2% 0.0% 0.6% -0.2% -0.2% 30% 33%
Equity Japan Mid-large Passive Index 6.1% 5.4% 0.0% 0.3% 0.0% 0.3% 0.0% -0.5% 0.7% -0.2% 40% -0.2%
Equity Emerging Mid-large Active Fundamental ~ 4.4% 2.9% 0.0% 0.7% 0.0% 0.5% -0.3% 0.7% -0.1% 0.0% 20% 3.0%
Equity Emerging Mid- large Passive Index 5.4% 4.5% 0.0% 1.2% 0.0% 0.8% -0.5% -0.6% -0.2% 0.1% 20% -0.3%
Bonds Global Aggregate Active Fundamental 0.0% 18.4% -0.1% -9.4% 0.1% -2.1% -0.6% 0.6% -3.8% -3.1% 20% 0.1%
Bonds EUR IG Active Fundamental 0.0% 4.6% 0.0% -0.1% 0.1% 0.0% 0.0% 3.3% -6.8% -1.2% 15% 0.8%
Bonds EUR IG Passive Index 28.4% 11.3% 02%  -120% 199%  5.4% -1.7%  -3.6% 10.3% -1.5% 30% -0.2%
Bonds USD IG Passive Index 11.0% 15.4% 0.1% -6.5% 0.3% 3.2% -2.3%  -0.4% 1.1% 0.2% 25% -0.2%
Portfolio Weight Sum 100.0% 100.0% 6.3%  -252%  20.5% 10.0%  -5.9% 0.0% 0.0% -5.7%
Tracking error 2.2% 1.4% 0.1% 1.2% 0.1% 0.5% 0.2% 0.2% 0.3% 0.2%
Expected Net Fund Alpha 0.4% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% -0.1% 0.0%
Allocation to Sustainable Investments 30% 26% 2% -6% 6% 3% -1% -1% 2% -1%

Notes: 1G: Investment Grade, HY: High Yield, HC: Hard Currency. Sustainable Investment allocation is
calculated from each fund minimum exposure in Table A2. The tracking error of the TAA portfolio and the
SAA Min TE sub-portfolio is measured relative to the SAA portfolio. For each view sub-portfolio, the
tracking error is measured against the portfolio that expresses the underlying view using core indices only.
For the Alpha, Constraints, and Funding sub-portfolios, the relevant risk measure is simply their volatility.

Table 8 addresses the interpretability issues observed in Table 6. In this version, the Alpha
sub-portfolio once again behaves as expected by tilting in favor of funds with higher net alpha and
away from those with lower or negative net alpha. The Constraints sub-portfolio cleanly reflects
the sustainability requirement, reallocating weight away from funds with limited Sustainable
Investments exposure and towards those with stronger commitments.
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The Tactical-views sub-portfolios remain easy to interpret. They continue to tilt allocations in line
with the underlying directional views, favoring funds that provide exposure to positively viewed
asset classes and reducing allocations to those linked to negatively viewed ones. The most negative
view, on Bond EUR Sovereign, now produces an underweight in the Bonds EUR 1G Passive Index
and the Bonds Global Aggregate Active Fundamental funds. Both funds exhibit meaningful

exposure to Bond EUR Sovereign risk, as captured by the systematic variance—covariance
fund,fund
systematic

qund,fund in (A9).

systemic

structure, X in (A6), and the corresponding elements of the uncertainty matrix,

While this refinement improves interpretability, it comes at a cost: the SAA Min-TE sub-portfolio
must adapt to the reduced investable universe after excluding certain funds, which leads to an
increase in its tracking error relative to the original baseline in Table 6.

Overall, Table 8 restores a clean, coherent decomposition in which Alpha, Views, and Constraints
once again reflect their intended economic drivers. The sustainability requirement yields a
transparent, interpretable re-tilt of the TAA portfolio, achieved through this second iteration of the
framework. The decomposition remains fully additive: each fund’s final weight can still be traced
back to contributions from SAA replication, tactical views, fund net alphas, the explicit
sustainability constraint, and the funding adjustment.

IV. Discussion

We propose a practical approach for real-world applications that makes the allocation of portfolio
optimization for a benchmarked, constrained TA A portfolio transparent and traceable to its drivers.
The framework builds on the well-known result that an MVO portfolio can be written as an
unconstrained solution plus correction terms and extend this decomposition to RPO. We adapt the
approach to state-of-the-art TAA portfolio construction using RPO so that each optimized weight
can be decomposed into contributions of sub-portfolios that reflect a replication of the SAA using
a list of funds selected for the implementation, the tactical views, the expected net alpha of the
selected funds, the binding constraints, and the funding adjustment required to meet the fully
invested constraint. This framework allows stakeholders to see precisely why the optimizer chose
a given allocation. A case study with real funds and a minimum sustainable-investment constraint
illustrates these elements clearly in the decomposition.

V. Appendix A

In Table A1, we list the core assets that compose the SAA portfolio, together with their indices,
associated volatilities, and SAA weights. The core assets form the set NV of non-investable assets
in the analytical framework of this paper. The table also presents the directional tactical bets used
in numerical examples, as well as the corresponding unconstrained active tactical portfolio
constructed from these directional scores and asset volatilities using equation (25).

In Table A2, we present the characteristics of the funds selected for implementing the TAA
portfolio. The data set used in this paper is based on existing, investable funds. For fixed-income
funds denominated in non-EUR currencies, we use the EUR-hedged share class to ensure
consistency with the EUR-based risk model. For equity funds, currency returns are simply
converted into EUR. The minimum allocation to Sustainable Investments for each fund, defined
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according to the Sustainable Finance Disclosure Regulation (SFDR) framework of the European
Union, is obtained directly from the respective fund prospectus.

Table Al. SAA portfolio and the active unconstrained TAA portfolio

g | =
=) = Z <
Core Assets Tickers 2 £ s 5
£ 813 | %
2 S| €€
g | 3 E| | E
ElS |25 ]5]35
Equity Europe EMU NDDLEURO Index 1 - 15.5%] 19% | 0.50 [ 6%
Equity Europe EMU SC NCLDEMU Index 1 16.5%
Equity Europe UK NDDLUK Index 1 No |[11.7%
Equity USA NDDUUS Index 1 No [15.4%]| 15%
Equity USA SC RU20INTR Index 2 No [20.8%
Equity Japan NDDLIN Index 1 No [14.1%| 9%
Equity Emerging Global NDUEEGF Index 1 No [16.5%| 7%
Bond EUR Sovereign LEATTREU Index 3 5.4% | 20% | -1.00 | -43%
Bond EUR Investment Grade LECPTREU Index 3 4.7% | 5% | 0.50 | 24%
Bond EUR High Yield LF88TREU Index 3 7.0%
Bond USD Sovereign LUATTRUU Index 3 Yes | 4.8% | 13%
Bond USD IG LUACTRUU Index 3 Yes | 6.9% | 12%
Bond USD HY LF89TRUU Index 3 Yes | 7.3% 0.50 | 11%
Bond EMD HC Sov Global JPGCCOMP Index 4 Yes | 9.0% -0.25 | -6%
Bond EMD LC Sov Global JGENVUUG Index 4 Yes [10.7%
Diversification Real Estate Pan-Europe TRNHUE Index 5 Yes [18.9%
Diversification Commodity Global BCOMXALT Index 3 Yes [16.7%

Notes: SC: Small Caps, IG: Investment Grade, HY: High Yield, HC: Hard Currency, LC: Local Currency.
Source: 1) MSCI, 2) Bloomberg, 3) J.P. Morgan, 4) FTSE EPRA. Authors’ calculations.

Table A2. Characteristics of the funds selected for portfolio construction

Designation Asset Class Coverage Style Approch  Philosophy .Hedgin s Sustainable Inception
into EUR Investment Date
Equity Europe Mid-large Active Fundamental Equity Eurozone Mid-large Active Fundamental No 30% 23-Oct-03
Equity Europe Mid-large Passive Index Equity Eurozone Mid-large Passive Index No 40% 1-Dec-10
Equity USA Growth Active Fundamental Equity USA Growth Active  Fundamental No 25% 3-Jan-95
Equity USA Mid-large Passive Index Equity USA Mid-large Passive Index No 0% 10-Jun-08
Equity Japan Mid-large Active Fundamental Equity Japan Mid-large Active  Fundamental No 30% 31-Dec-90
Equity Japan Mid-large Passive Index Equity Japan Mid-large Passive Index No 40% 2-Aug-23
Equity Emerging Mid-large Active Fundamental Equity Emerging Markets Mid-large Active Fundamental No 20% 20-Oct-97
Equity Emerging Mid-large Passive Index Equity Emerging Markets Mid-large Passive Index No 20% 3-Sep-12
Bonds Global Aggregate Active Fundamental Bond Global Aggregate Active Fundamental Yes 20% 5-Nov-01
Bonds EUR Aggregate Active Fundamental Bond EUR Aggregate Active  Fundamental - 20% 4-Apr-00
Bonds EUR Sovereign Active Fundamental Bond EUR Sovereign Active  Fundamental - 20% 27-Jun-01
Bonds EUR Sovereign Passive Index Bond EUR Sovereign Passive Index - 0% 31-May-17
Bonds EUR IG Active Fundamental Bond EUR Investment Grade Active Fundamental - 15% 1-Feb-22
Bonds EUR IG Passive Index Bond EUR Investment Grade Passive Index - 30% 15-Jan-19
Bonds USD IG Passive Index Bond USD Investment Grade Passive Index Yes 25% 12-Sep-23

Notes: SC: Small Caps, IG: Investment Grade, HY: High Yield, HC: Hard Currency, LC: Local Currency.

In Table A3, we report the results of the regression analysis performed on the vector of weekly
returns in excess of cash XR¢ of each fund i listed in Table A2 against the matrix of weekly returns

in excess of cash XR, of the core indices in Table Al. The regression is performed from end of
November 2020 to end of November 2025. To estimate the factor exposures, we employ Lasso
regressions as proposed by Tibshirani (1996) rather than ordinary least squares. Lasso’s £ -penalty
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allows coefficients associated with non-significant explanatory variables to shrink exactly to zero,
yielding parsimonious and interpretable exposures while mitigating overfitting.

For each fund i, the vector 8 }C with the betas is obtained by solving:
B _ . i i \7 2 i
Buasso = arg min |I XR; — (B}c) XRc 12 + € Il B I (A1)

Where |-l denotes the squared Euclidean (i.e., £3) norm, |.|l; is the #; norm and & is the
regularization parameter. The value of ¢ is selected via cross-validation over a grid of 100
candidate values ranging from ¢, the smallest penalty that zeros all coefficients, down to &in =
&max/105. The final choice of & follows the one-standard-error rule, balancing model sparsity and
predictive accuracy, as recommended by Hastie et al. (2015).

Table A3 also reports the Ongoing Charges (OCR) of each fund. The alphas shown in the table are
net of these charges and are used directly in equation (34). For each fund, the expected alpha is
calculated as the product of its expected information ratio and its specific volatility (the residual
volatility from the Lasso regression), minus the OCR. The information ratio is set to 0.5 for
actively managed funds and to O for passive funds, reflecting the assumption that the selected
active funds were included based on their managers’ ability to generate alpha.

Table A3. Fund analytics

Beta of Funds to Core Assets
2
L
2 |z z 2
e © S e
= > o = =
£ |2 | 2 o o 5 2
2 |z o = E R N
o g
o E Z k= 5] = 9o o 2 2 R
Fund Designation % 5 g 5 ; 2 5 § T &% 8 3 E Lz = g
z |8 | % Z 2 el £ = & oz - & &% &
£ | | E . |28 3 9 2l 23 ¢ 35 ¢ o] S
E e S|t ¢EF -2 s 2|2 22225 2 218 ¢
B -8 < = =4 =1 a 5 5
22|82l 2 |~ | 8 |® 2 2 2 2 2 2|l v = = v % = w|E& %
zelZ2| 2| C | 8|5 2 2 2 2 2 Bl § §E E : 2 : :l:z :z
G| <| @ o) g ld 4 8 & & & S|@ @ & A @ @ & @a|la B
Equity Europe Mid-large Active Fundamental 3.0% | 096 | 0.5 [0.96%]| 0.6% | 0.99
Equity Europe Mid-large Passive Index 12% | 099 | 0.0 [0.15%]-0.2% | 0.99
Equity USA Growth Active Fundamental 10.0%| 0.79 [ 0.5 |0.96% | 4.0% 1.21
Equity USA Mid-large Passive Index 6.9% [ 0.81 | 0.0 [0.14%|-0.1% 0.84
Equity Japan Mid-large Active Fundamental 85% | 0.72 | 0.5 [0.98%]| 3.3% 0.72
Equity Japan Mid-large Passive Index 8.0% | 0.72 | 0.0 [0.15%]-0.2% 0.76
Equity Emerging Mid-large Active Fundamental 82% | 0.73 | 0.5 |1.11%] 3.0% 0.77
Equity Emerging Mid-large Passive Index 6.6% | 0.83 | 0.0 [0.27%]-0.3% 0.83
Bonds Global Aggregate Active Fundamental 2.6% | 0.79 | 0.5 |1.15%] 0.1% 0.35 0.37 0.27
Bonds EUR Aggregate Active Fundamental 0.6% | 0.99 | 0.5 |0.49%]-0.2% 0.68 0.30
Bonds EUR Sovereign Active Fundamental 0.8% | 098 | 0.5 [0.43%]| 0.0% 0.97
Bonds EUR Sovereign Passive Index 0.2% | 1.00 | 0.0 [0.15%]-0.2% 0.97
Bonds EUR IG Active Fundamental 2.6% [ 0.71 | 0.5 [0.47%]| 0.8% 0.93
Bonds EUR IG Passive Index 0.2% | 1.00 | 0.0 [0.15%]|-0.2% 1.12
Bonds USD IG Passive Index 0.2% | 1.00 | 0.0 [0.20%]|-0.2% 1.02

Notes: 1G: Investment Grade.
Source: MSCI, Bloomberg, J.P. Morgan, FTSE EPRA. Authors’ calculations.

VI. Appendix B

Following Bass, Gladstone, and Ang (2017), we construct the risk model using monthly returns in
excess of cash of the core asset classes, expressed in EUR, over a 20-year period from the end of
November 2005 to the end of November 2025. To capture the main sources of common variation
in a parsimonious way, we apply Principal Component Analysis (PCA) to the correlation matrix
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of these returns. PCA decomposes the correlation matrix into orthogonal eigenvectors,
interpretable as long—short portfolios, and associated eigenvalues that rank their relative
importance. Denoting the correlation matrix byC,,,., its PCA representation is C,,,, = VAVT,
where V contains the eigenvectors and A is the diagonal matrix of ordered eigenvalues. The
variance—covariance matrix is then obtained by rescaling this structure with the volatilities of the
core assets, X.pre = Lgigg Ceore Laiag-

For the core assets, we retain the first six principal components, which together explain 89% of
the total variance. These factors summarize the dominant drivers of co-movements across asset
classes while filtering out high-frequency noise. The first component resembles a broad market
factor, the second behaves like a duration factor loading positively on sovereign and
investment-grade bonds, and the third captures risks associated with emerging markets and
commodities. The remaining components explain progressively smaller shares of variance and are
less economically interpretable, though they contribute to improving the overall conditioning of
the risk model.

Table A4. Statistical risk model based on core asset returns

Statistical factors
Total Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Index

% of variance explained 89% 56% 16% 7% 4% 3% 3% provider
Core Assets Tickers Core Asset weights in PCA orthonormal factors

Equity Europe EMU NDDLEURO Index 28.0% -13.8% -25.7% -15.4% 52.8% -15.3% 1
Equity Europe EMU SC NCLDEMU Index 28.6% -13.5% -20.6% -1.3% -3.5% -23.4% 1
Equity Europe UK NDDLUK Index 26.3% -14.8% -8.7% -17.5% -6.7% -25.3% 1
Equity USA NDDUUS Index 28.5% -10.0% -9.8% -22.7% -26.4% 26.0% 1
Equity USA SC RU20INTR Index 26.4% -13.5% -12.3% -22.9% -8.1% 23.0% 2
Equity Japan NDDLJN Index 20.9% -25.7% -22.1% -16.5% -6.9% 48.3% 1
Equity Emerging Global NDUEEGF Index 27.1% -7.9% 31.5% -19.5% 38.0% 0.0% 1
Bond EUR Sovereign LEATTREU Index 9.2% 48.7% -27.1% -3.2% 18.7% 35.4% 3
Bond EUR Investment Grade LECPTREU Index 23.5% 30.5% -14.5% 34.3% -15.6% 24.9% 3
Bond EUR High Yield LF88TREU Index 27.7% -3.2% 1.5% 52.3% -5.9% -4.2% 3
Bond USD Sovereign LUATTRUU Index 1.2% 53.1% 6.4% -39.7% 19.9% -5.9% 3
Bond USD IG LUACTRUU Index 22.5% 37.8% 9.7% 5.8% -10.9% -2.0% 3
Bond USD HY LF89TRUU Index 29.0% 0.2% 9.4% 34.3% 9.4% -4.6% 3
Bond EMD HC Sov Global JPGCCOMP Index 27.2% 20.1% 22.4% 1.9% 15.2% -13.7% 4
Bond EMD LC Sov Global JGENVUUG Index 24.5% 9.0% 41.6% -28.6% 18.6% -16.1% 4
Diversification Real Estate Pan-Europe TRNHUE Index 25.6% 4.1% -28.8% 6.7% 25.1% -39.1% 5
Diversification Commodity Global BCOMXALT Index 16.8% -18.4% 53.7% 13.5% -32.7% 33.3% 3

Note: Risk model estimation based on a PCA model using monthly EUR returns in excess of cash from end
of November 2005 through end of November 2025.
Source: 1) MSCI, 2) Russell, 3) Bloomberg, 4) J.P. Morgan, 5) FTSE EPRA. Authors’ calculations.

We set the diagonal matrix of X.,,. to the variances of the core assets, with each variance
estimated from weekly EUR-denominated returns over the same sample period.

1 1nny
VaTLre  t COVgprs
Loore = : : (A2)
ny,1 ny

COVcore *** VATeore
i,i

) . . 2 .
with varl,,. = covgyye = (ac‘ore) for core asset i.

The final variance—covariance matrix X for core assets and funds will have size n, X ny with ny=
n; + ny where n; is the number of investable funds and ny the number of non-investable assets,
which are exactly the core assets in this setup . This matrix can be written as the sum:
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L= z:systematic + 2"fund specific (A3)

and requires the betas of the funds, Bifc, relative to core assets as well as the specific variance of
. . (2

funds, varg, = (a}c) :

The systematic variance-covariance, Xgystematic» 1S based on o andon B4, a ny X ny matrix

where the columns have the vectors of exposures 1) of core assets to themselves (each vector is 1
on the row for the respective core asset and zero otherwise) and ii) of the funds to the core assets,

By

2:systematic = ﬁallzcoreﬁle (A4)
with:
Core assets
1 L 0 7
1 Core assets
0o .. 1
= 1,1 1in
Baw=|pit .. B (AS5)
: Lo : Funds
ny, n,n
Bre™ o Bre

and thus with:

Core assets Funds
h> zcore,func? Core assets
core systematic

2:systematic = core,fund T 2:fund,fund (48)

. . Fund
systematic systematic unes

The fund specific variance—covariance matrix assumes that i) the specific risks of individual funds
are uncorrelated with each other, and i1) also uncorrelated with the risks of core assets. This matrix

is based only on the specific variance of funds relative to their benchmarks, vars, = (af‘b) :

Core assets Funds
0 .. O 0 0 1
A S : 0 : Core assets
0 .. O 0 0
2:fund specific = 0 0 varflb 0
: e : * : Funds
0 .. 0 0 varfrll,’_

The uncertainty matrix € is a ny, X ny matrix associated with the uncertainty in the expected
returns and is an important input for the RPO process. Our choice for this matrix is:

Q= 'ststematic + 2:fund specific (A7)
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where:

'ststematic = ﬁalldiag(zcore)ﬁja—ll (A3)

is consistent with the choice of Yin et al. (2022) to use a diagonal uncertainty matrix with the
variances of the assets for which we express our tactical views. However, while a diagonal
uncertainty matrix remains appropriate for core assets, we cannot ignore the correlations between
funds and core assets. These correlations are essential for translating tactical views on core assets
into effective allocations across funds, which is why the additional Zf,,4 specific term in equation
(A7) is needed. This extension, proposed by Mallouli et al. (2025), illustrates a setting where the
uncertainty matrix should not be diagonal. The resulting uncertainty matrix is therefore:

Core assets Funds
. core,fund Core assets
diag(Zcore) ststematic

Q 0 = A
systematic qeorefund T qfundfund | Funds (A9)

systematic systematic

VII. Appendix C

Here we show how to extend the frameworks of Sections II.A and IL.B to include a term with
aversion to turnover, something often used by quantitative managers in the industry. We consider
first the simplest case where equation (2) includes a quadratic turnover penalty term:

max (u'a—A(a"Za) —TC |l a — a,—, I3) (A10)
a

with TC a measure of the estimated transaction costs scaled by an aversion to turnover, a;_, the
current allocation and subject to constraint BT @ = b. It is not difficult to show that if we define:

I=x+ o1 (Al1)

~

1}

then the first order conditions and all closed form expressions in Section II.A remain valid under
substitution of u by fi and X by X.

1+ 2TCa,, (A12)

For RPO, equation (14) becomes:
max (uTa—A(a"Za) — kWa™Qa—TC |l a— a; I13) (A13)
a

and it is easy to demonstrate that all closed equations in Section II.B remain valid under the
substitution of u by fi and Q by Q defined by:

0(t) =21 + §ﬂ+2Tc1 (A14)
If we replace the quadratic turnover penalty with an €4 turnover penalty, then we obtain instead:

max (u'a — A(a"Za) — TC|la — a;—oll,) (A15)
a
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subject to constraint BTa = b and where | x ll;=Y; | x; | measures total turnover from the
current allocation a;—,. The problem is convex and admits a unique optimal solution when X is
positive definite and B has full column rank.

Because of the kink in the norm £; of @ — a,-( at a; = a;~; and the consequent change of sign
in the derivative of ||a — a,||; with respect to a for a; > a,-q; when compared with a; < a;=;,
the first order KKT condition in @ becomes:

p—21%a—B5—TCs=0 (A16)

with s defined as s; = sign(a; — a;=¢;) and an arbitrary s;" if a; = a,—,;, which for convenience
we can set to any number in the range [—1, +1], with this choice having no impact:

+1, a; > At=0,ir
si=4[-L+1], a; = awo, (A17)
_1, ai < at=0’i.

If we define the £ -shrunken unconstrained portfolio:

a©@(s) = % 21 (u—TCs) (A18)
for any fixed sign vector s, then, repeating the algebra (10) to (13) with u replaced by u — TCs
yields the same constrained solution structure:

a®) = a0 =) LI (5) (A19)

with the multipliers 6, (s) jointly determined by the linear equation:
(B"271B)&(s) = 2A(BTa(s) — b) (A20)

Equations (A18), (A19) and (A20) are exact for the given s. In its final form, the optimal sign
vector s* is the one derived from the resulting optimization solution a(s*). However, s* is not
known ex-ante. Under £, we must first solve for a*, then identify s*, and then plug s*into (A18),
(A19) and (A20) to obtain a decomposition similar to (10) to (12), i.e., an unconstrained a® (s
plus one correction per constraint.

To solve the optimization problem numerically we can re-write it as:

max ua-1a'>a-TC1't
CE: (A21)
st. a—aqy<t,—(a—ay) <t,B'a=b,1=0

The solver returns the unique optimal active portfolio a*, the Lagrange multipliers 8* for BTa =
b, and the multipliers for the turnover, which encode the sub-gradient signs of s*. From these
outputs one recovers the optimal sign vector s* by using a* in (A17).

The ¢, penalty inserts a data-driven threshold TC in the returns vector. Assets with weak returns
relative to TC stay at a,—q; (no trade) while large returns in absolute terms flip s; to +1 or —1
respectively depending on the sign of the returns, producing sparse and intuitive trades. The
hedging portfolios for the constraints remain the same minimum variance style sub-portfolios as
with the interpretation of (12).
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For the RPO problem under #; turnover constraint we have:
max (ATa-3a"Q(®)a-TC lla-a ) (A22)

subject to BTa = b and with the same robust Q(t) as in (18). For a fixed s, the unconstrained
robust portfolio is:

a®(t,s) = Q)™ (A—"TCs) (A23)
and the constrained solution is equivalent to (21):

a*(t,s) = a'®(t,s) — Q) 'B(BTQ(t)"'B)"1 (BTaV(t,s) — b) (A24)
with multipliers from:

(BTQ(t)"'B)é(t,s) = (BTa®(t,s) — b) (A25)

As before, s* must be determined numerically by solving the RPO first, but now with Q(t). Then
the decomposition follows by using s* into (A24) and (A25). The structure of the results in I1.B
remains unchanged replacing u by u — TCs™.
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